Instruction Manual

Flow Measurement Transmitter NivuFlow 600

Firmware Revision: 2.3.X

Revised manual

Document revision: rev. 03 / 22.10.2019

Original Manual: German / rev. 03 as of 25.09.2019

NIVUS AG, Switzerland

Burgstrasse 28 8750 Glarus, Switzerland Phone +41 (0)55 6452066 Fax +41 (0)55 6452014 swiss@nivus.com www.nivus.de

NIVUS, Austria

Muehlbergstrasse 33B 3382 Loosdorf, Austria Phone +43 (0)2754 567 63 21 Fax +43 (0)2754 567 63 20 austria@nivus.com www.nivus.de

NIVUS Sp. z o.o., Poland

ul. Hutnicza 3 / B-18 81-212 Gdynia, Poland Phone +48 (0)58 7602015 Fax +48 (0)58 7602014 biuro@nivus.pl www.nivus.pl

NIVUS, France

17 Rue du Stade 67870 Bischoffsheim, France Phone +33 (0)388 9992 84 info@nivus.fr www.nivus.fr

NIVUS Ltd., United Kingdom

Wedgewood Rugby Road Weston under Wetherley Royal Leamington Spa CV33 9BW, Warwickshire Phone +44 (0)8445 3328 83 nivusUK@nivus.com www.nivus.com

NIVUS Middle East (FZE)

Building Q 1-1 ap. 055
P.O. Box: 9217
Sharjah Airport International
Free Zone
Phone +971 6 55 78 224
Fax +971 6 55 78 225
middle-east@nivus.com
www.nivus.com

NIVUS Korea Co. Ltd.

#2502, M Dong, Technopark IT Center, 32 Song-do-gwa-hak-ro, Yeon-su-gu, INCHEON, Korea 21984 Phone +82 32 209 8588 Fax +82 32 209 8590 korea@nivus.com

NIVUS Vietnam

21 Pho Duc Chinh, Ba Dinh, Hanoi, Vietnam Phone +84 12 0446 7724 vietnam@nivus.com www.nivus.com

page 2 NF 600 - rev. 03 / 22.10.2019

Copyrights and property rights

This document and its contents are proprietary to NIVUS GmbH and are not to be reproduced or copied without the express written permission of NIVUS GmbH.

Violations will be liable for compensation.

Important Note

This instruction manual may exclusively - even in parts - be copied or translated in any other way with the express written consent of NIVUS GmbH.

Translation

If the device is sold to a country in the European Economic Area (EEA) this instruction manual must be translated into the language of the country in which the device is to be used.

Should the translated text be unclear, the original instruction manual (German) must be consulted or one of the legally associated companies and subsidiaries of NIVUS group contacted for clarification.

Copyright

No part of this publication may be reproduced, transmitted, sold or disclosed without prior permission. Damages will be claimed for violations.

All rights reserved.

Names

The use of general descriptive names, trade names, trademarks and the like in this manual does not entitle the reader to assume they may be used freely by everyone. They are often protected registered trademarks even if not marked as such.

Document modifications

Rev.	Modifications	Editor in charge	Date
03	Complete revision: many features and functions added, layout redesigned etc.	MoG	22.10.2019
02	Section "33.4 Alignment" modified	MoG	27.02.2019
01	Minor modifications; no approval	DMR	25.04.2016
00	First version based on the German document	DMR	21.12.2015

page 4 NF 600 - rev. 03 / 22.10.2019

Contents

COPYRIGHTS AND PROPERTY RIGHTS		3
DOCUI	MENT MODIFICATIONS	4
GENEF	RAL	11
1	About this manual	11
1.1	Applicable documentation	11
1.2	3	
1.3	B Abbreviations used	12
2	Connections and Operating Elements	12
2.1	11 7	
2.2	3	
2.3		
2.4	Interfaces	14
SAFET	Y INSTRUCTIONS	15
3	General: Used Symbols and Signal Words	15
3.1	Valuation of the accident level	15
3.2	2 Warning notices on the product (option)	16
4	Safeguards and Precautions	16
5	Warranty	17
6	Liability Disclaimer	17
7	Use in accordance with the requirements	
8	User's Responsibilities	
9	Personnel requirements	
DELIVI	ERY, STORAGE AND TRANSPORT	20
10		
11	Reception inspection	20
12	Storage	20
13	-	
14	-	

PRODUCT SPECIFICATION	21
15 Product Construction and Overview	21
15.1 Dimensions of enclosure	22
15.2 Connectable sensors	23
15.3 Device identification	23
16 Specifications	24
17 Configuration	26
17.1 Device Types	26
FUNCTIONAL DESCRIPTION	27
18 Operating Ranges	
19 Functional Principle	28
19.1 Flow velocity detection	
19.2 Flow Calculation	29
INSTALLATION AND CONNECTION	30
20 General Installation Instructions	
20.1 Avoidance of electrostatic discharge (ESD)	
20.2 Installation and Mounting versions	
20.3 Choosing the installation place	31
20.4 Transmitter fastening on DIN rail in control cabinets	31
20.5 Field enclosure fastening and preparing electric installation	32
21 Electrical Installation	34
21.1 Wiring to the Terminal Blocks	34
21.2 Plans of terminal connections	36
21.3 Switching on voltage supply	41
21.3.1 Power supply DC	41
21.3.2 Power supply AC	42
21.4 Relays	43
22 Installation and Connection of Sensors	43
22.1 Sensor Installation Principles	43
22.2 Installation of Clamp-On Sensors	44
22.3 Installation of Wet Sensors	44
22.4 Path arrangements	44
22.5 Cable and Cable length for connecting the sensors	
22.6 Sensor Connection to NivuFlow	
22.6.1 Sensor connection 1-path measurement / 2-path measurement	
22.7 Connection to/via Extension module NFE	47
23 Overvoltage Protection Measures	48
23.1 Overvoltage Protection for Power Supply	48
23.2 Overvoltage Protection for mA-Inputs/Outputs	50

23.3	Overvoltage protection for communication interfaces	50
23.4	Overvoltage protection for (transit time) sensor connectors	51
23.4	Basic protection - equipotential bonding cable	51
23.4	Extended protection - overvoltage protection "SonicPro T"	51
OPERA	TION START-UP	54
24	Notes to users	54
25	Operation Basics	55
25.1	Display Overview	55
25.2	2 Using the Control elements	55
25.3	B Use/Entry using the letter block	56
25.4	Use/Entry using the numeric keypad	57
25.5	Revision of parameters	58
25.6	Menus	58
26	Measurement with Clamp-On Sensors	59
27	Measurement with wet sensors	60
START-	UP EXAMPLES	61
28	Programming a 1-path diametrically opposed Measurement	61
28.6	5.3 Simple Parameter Setting	61
28.6	S.4 Extended Parameter Setting	64
SETTIN	G PARAMETERS	65
29	General Programming	65
29.1	Save Parameters	65
29.2	2 Change Password	65
30	Parameter Functions	66
30.1	Main Menu	66
30.2	2 Overview: Functions Top Menu Level	66
30.2		
30.2	2.2 Data Menu	67
30.2	2.3 System Menu	68
30.2	2.4 Communication Menu	69
30.2	2.5 Display Menu	69
30.2	2.6 Connections Menu	70
31	Application / MP1 / MP2 / Combi Parameter Menu	70
31.1	Setting parameters in Measurement place Menu	70
31.1	.1 Active	71
31.1	.2 Name of Measurement Place	71
31.1	.3 Transit Time Mode	72
31.1	.4 Number of Paths	73

31.1.5	Medium	73
31.1.6	Medium Temperature	73
31.1.7	Channel Profiles	73
31.1.8	Wall Material	74
31.1.9	Lining	74
31.1.10	Sludge Level	75
31.1.11	3D-Preview	75
31.1.12	Flow velocity analysis	75
31.1.13	Low-Flow Suppression	75
31.1.14	Damping	76
31.1.15	Stability	76
31.2	Setting parameters in Measurement place Combi Menu	77
	Setting parameters in v-Paths Menu	
31.3.1	Active	
31.3.2	Sensor Types in >Clamp-On< Transit Time Mode	78
31.3.3	Sensor Types in >Wet< Transit Time Mode	78
31.3.4	Sensor Mounting Position	79
31.3.5	Weighting and Hydraulic Factor	81
31.3.6	v-Minimum and v-Maximum	81
31.3.7	v-Path Error	81
31.4	Setting parameters in Inputs and Outputs (analog and digital) Menu	81
31.4.1	Analog Inputs	82
31.4.2	Analog Outputs	83
31.4.3	Digital Inputs	84
31.4.4	Digital Outputs	86
31.5	Setting Parameters in Diagnostics Menu	88
32 D	ata Parameter Menu	88
	Trend	
	Total	
	Day Totals	
	USB stick	
	Data storage	
	Operating hours	
	ystem Parameter Menu	
	Information	
	Region settings	
33.2.1	(Operation) Language	
33.2.2	Date Format	
33.2.3	Units	
33.2.4	Data Units	
	Time/Date	
	Error messages	

33.5	Service	102
33.5	.1 Service Level	103
33.5	2 Change (System) Password	103
33.5	3 Reboot	103
33.5	.4 Restart Measurement	104
33.5	5 Parameter reset	104
33.5	6 Update NivuFlow	104
34	Communication Parameter Menu	105
35	Display Parameter Menu	107
36	Connections Parameter Menu	109
MAIN DI	SPLAY	110
37	General overview	110
37.1	Display Flow in measurement places 1 and 2	112
37.2	Display Level in measurement places 1 and 2	112
37.3	Display Velocity in measurement places 1 and 2	113
37.4	Display Temperature in measurement places 1 and 2	113
37.5	Display Sum in measurement places 1 and 2	114
37.6	Display Trend/Hydrograph in measurement places 1 and 2	114
37.7	Display Flow in measurement place Combi	115
37.8	Display Measurement Place 1/2 in measurement place Combi	115
37.9	Display Total in Measurement Place Combi	116
DIAGNO	STICS	117
38	Diagnostics Menu Principles	117
39	Diagnostics v-Paths	117
40	Inputs and Outputs (analog and digital)	119
40.1	Analog Inputs	
40.2	Analog Outputs	120
40.3	Digital Inputs	122
40.4	Digital Outputs	122
41	Signal Analysis	123
42	Simulation	128
ERROR	MESSAGES	130
43	Error message indicated, Cause of failure and Troubleshoot	ing 130

MAIN	MAINTENANCE AND CLEANING		
-	44	Maintenance	133
	44.1	Maintenance Interval	133
	44.2	Customer Service Information	133
	45	Cleaning	134
	45.1	Transmitter	134
	45.2	Sensors	134
	46	Dismantling/Disposal	134
	47	Installation of spare parts and parts subject to wear and tear	135
	48	Accessories	135
INDE	X		136
CREI	DIT	S AND LICENSES	139
	49	List of references of the licenses and codes used	139
APPF	30	ALS AND CERTIFICATES	140

General

1 About this manual

Important note

READ CAREFULLY BEFORE USE.

KEEP IN A SAFE PLACE FOR LATER REFERENCE.

This instruction manual for the flow measurement transmitter NivuFlow 600 is for the intended use of the device only. This manual is oriented exclusively to qualified expert personnel. Read this instruction manual carefully and completely prior to installation and connection since it contains relevant information on this product. Observe the notes and particularly follow the warning notes and safety instructions.

Keep this manual in a safe place and make sure it is available for the users of this product at all times.

If you should have problems to understand information contained within this instruction manual contact one of the legally associated companies and subsidiaries of NIVUS group for further support. The companies and subsidiaries of NIVUS group cannot be held responsible for damage to persons or materials due to incorrectly understood information in this instruction manual.

In the case of selling the instrument this instruction manual shall be provided to the purchaser since it is a part of the standard delivery.

1.1 Applicable documentation

For the installation and operation of the complete system extra instruction manuals or technical descriptions may be required apart from this manual.

- Technical Instructions Transit Time Sensors
- Installation Instructions Transit Time Sensors
- Technical Instructions NIVUS MODBUS TCP/RTU Application Interface for measurement transmitters of the series NivuFlow 5xx, 6xx, 7xx and Energy Saver
- Technical Instructions Extension Module NFE

These manuals are provided with the auxiliary units or sensors and/or are available as download on the NIVUS homepage.

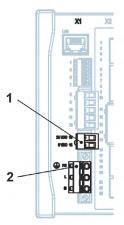
1.2 Signs and definitions used

Image	Meaning	Remark
•	(Action) Step	Action to be performed by you. Note the numbering of action steps. Observe the order of the steps.
<i>□</i>	Cross-reference	Refers to further or detailed information.
>Text<	Parameter or Menu	Indicates a parameter or a menu that is selected or described.
(i	Reference to docu- ment	Refers to an accompanying documentation.
i	Graphics/Table info	Additional information in the legend of a graphic or a table

Table 1-1 Structural elements within the manual

1.3 Abbreviations used

Colour code for wires and single conductors


The abbreviations of colours, wire and components follow the international colour code according to IEC 60757.

BK	black	BN	brown	RD	red
OG	orange	YE	yellow	GN	green
BU	blue	VT	violet	GY	grey
WH	white	PK	pink	TQ	turquoise
GNYE	green/yellow	GD	gold	SR	silver

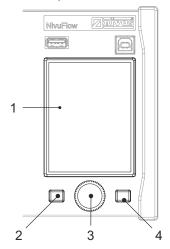
2 Connections and Operating Elements

2.1 Power Supply

The connection for the power supply is located on the lower part of the terminal block X1.

- 1 Power supply DC
- 2 Power supply AC and earth conductor

Fig. 2-1 Electrical connections of power supply


□

You can find a detailed connection plan in Sect. "31.4 Setting parameters in Inputs and Outputs (analog and digital) Menu".

page 12 NF 600 - rev. 03 / 22.10.2019

2.2 NivuFlow Operating Elements

The NivuFlow is operated completely in dialogue mode supported by the graphs on the display. To select individual menus and submenus use the rotary pushbutton as well as both function keys.

- 1 Graphic display
- 2 Left function key
- 3 Rotary pushbutton
- 4 Right function key

Fig. 2-2 Operating elements

2.3 Tasks of control elements

Colour display

You can read all settings, when setting parameters and in diagnostics.

Left function key (Menu and/or Back)

This key (Menu) takes you from the main display to the main menu. The same key (Back) is also used to exit the main menu and the submenus.

Rotary pushbutton

Use the rotary pushbutton to enter specific submenus. The functions can be selected using the rotary pushbutton as well.

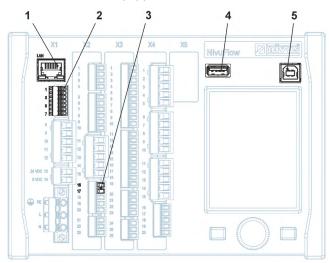
- Select the desired parameter or menus
- Navigation through the submenus and settings
- · Selection of letters or numbers for parameter setting

Right function key (Input and/or Tab)

This key is used to confirm value entries (via numeric keys or letter keys).

For some parameters the right function key can be used as >Tab<. This Tab function is always available when digits are visible in the upper right corner of the display. Then the Tab function is used to switch between pages/displays. This applies to the following settings:

- Menu >Application
 - Selecting the v-paths
 - Selecting the analog inputs / outputs
 - Selecting the digital inputs / outputs
 - Diagnostics of the v-paths


- Diagnostics of the signal analysis
- Menu >Data
 - Selection of Trend, Total and Day totals

Within the programming of multiple inputs/outputs or when programming several v-paths, the right function key is used to jump from one input/output or v-path to the next.

You will find a description on how to use the control elements in Sect. "25 Operation Basics".

2.4 Interfaces

The transmitter is equipped with various interfaces on the front panel.

- 1 Network interface (LAN)
- 2 BUS interface (RS485/RS232)
- 3 HART interface
- 4 USB-A interface (data transfer, parameter backup, device update)
- 5 USB-B interface (service)

Fig. 2-3 Available interfaces

Descriptions of the individual interfaces see Sect. "34 Communication Parameter Menu".

page 14 NF 600 - rev. 03 / 22.10.2019

Safety Instructions

3 General: Used Symbols and Signal Words

3.1 Valuation of the accident level

The general warning symbol indicates the risk of personal injuries or death. In the text section the general warning symbol is used in conjunction with the signal words described below.

DANGER

Warnings in high degree of risk

Indicates a high-risk, **imminently** hazardous situation which will result in death or serious injury if not avoided.

WARNING

Warnings in medium degree of risk

Indicates a **possible** danger with medium risk which may result in a life-threatening situation or (severe) bodily injury if it is not avoided.

CAUTION

Warnings in low-risk or property damages

Indicates a possible danger with moderate risk which may result in minor or moderate personal injury or material damage if not avoided.

WARNING

Danger by electric voltage

Indicates a hazard with a high risk of electric shock which may result in a life-threatening situation or (severe) bodily injury if it is not avoided.

Important Note

Contains information that should be highlighted.

Indicates a potentially damaging situation which can result in damage to the product or to an object in its environment.

Note

Contains information and facts.

3.2 Warning notices on the product (option)

General warning label

This symbol is for operators to refer to this manual.

Observing the information contained therein is required in order to maintain protection measures provided by the instrument during installation procedures and operation.

Protective conductor

This symbol refers to the protective conductor of the unit.

Depending on the mode of installation the instrument shall be operated solely connected to an appropriate protective conductor according to applicable laws and regulations.

4 Safeguards and Precautions

Working with NIVUS instruments requires to observe and to follow the safety measures and precautions below generally and at any time. These notes and warnings will not be repeated for each description within the document.

WARNING

Germ contamination

Parts can be contaminated with dangerous germs, especially if the sensors are used in waste water applications. Therefore, appropriate precautions must be taken when contacting cables and sensors.

Wear protective clothing.

WARNING

Observe occupational safety regulations

Before starting and while executing installation work, observing the work safety regulations needs to be checked constantly.

Disregarding these regulations may lead to personal injury.

WARNING

Do not disable safety devices!

It is strictly prohibited to disable the safety devices or to change the way they work.

Disregarding this may lead to personal injury or site damage.

WARNING

Disconnect the systems from mains

Maintenance, cleaning and/or repairs (by qualified personnel only) may only be performed when de-energised.

Disregarding this warning may lead to electric shocks.

Putting into operation by trained experts only

The entire measurement system shall be installed and put into operation by trained expert personnel only.

Integrated buffer battery

The integrated buffer battery may only be exchanged by NIVUS staff or personnel authorised by NIVUS. Infringements lead to a limitation of the warranty (see Sect. "5 Warranty").

page 16 NF 600 - rev. 03 / 22.10.2019

5 Warranty

The device has been functionally tested before delivery. If it is used as intended (see Sect. "7 Use in accordance with the requirements") and the operating instructions, the applicable documents (see Sect. "1.1 Applicable documentation") and the safety notes and instructions contained therein, are observed, no functional restrictions are to be expected and perfect operation should be possible.

Please also note in this regard the next Sect. "6 Liability Disclaimer".

Limitation of warranty

In the event of non-compliance with the safety instructions and instructions in this document, the companies of the NIVUS group of companies reserve the right to limit the warranty.

6 Liability Disclaimer

The legally associated companies and subsidiaries of NIVUS group assume no liability

- for damages owing to a change to this document. The legally associated companies
 and subsidiaries of the NIVUS group reserve the right to change the contents of this
 document and this disclaimer at any time and without any notice.
- for damages to persons or objects resulting from failure to comply with applicable regulations. When connecting, commissioning and operating the sensors, all available information and higher local legal regulations (in Germany e.g. VDE regulations) such as applicable Ex regulations as well as safety requirements and regulations in order to avoid accidents shall be adhered to.
- for damages to persons or objects resulting from improper use. For safety and
 warranty reasons, all internal work on the instruments beyond that involved in normal
 installation and connection, must be carried out only by qualified NIVUS personnel or
 persons or companies authorised by NIVUS.
- for damages to persons or objects resulting from the use of instruments in technically imperfect condition.
- for damages to persons or objects resulting from the use of instruments not in accordance with the requirements.
- for damages to persons or objects resulting from failure to comply with safety information contained within this instruction manual.
- for missing or incorrect measurement values or resulting consequential damages due to improper installation.

7 Use in accordance with the requirements

Note

The instrument is intended solely for the purpose described below.

Modifying or using the instruments for any other purposes without the written consent of the legally associated companies and/or subsidiaries of NIVUS group will not be considered as use in accordance with the requirements.

The legally associated companies and subsidiaries of NIVUS group cannot be held responsible for any damage resulting from improper use. The user alone bears any risk.

The NivuFlow 600 transmitter and associated sensor system is designed for continuous flow measurement of slightly contaminated to clear, pure water-based liquids in **fully filled** pipes (round and rectangular).

The measurement transmitter is designed and manufactured in accordance with the current state of the art and with the recognised safety rules and regulations applicable at the time this document is issued. Danger to persons or material damage cannot be completely ruled out, however.

The maximum permissible limit values as specified in Sect. "16 Specifications" shall be necessarily observed. Any case varying from these conditions which is not approved by NIVUS GmbH in written form is left at the owner's risk.

8 User's Responsibilities

Observe and comply with all guidelines and requirements

In the EEA (European Economic Area) national implementation of the framework directive 89/391/EEC and corresponding individual directives, in particular the directive 2009/104/EC concerning the minimum safety and health requirements for the use of work equipment by workers at work, as amended, are to be observed and adhered to. In Germany e.g. the Industrial Safety Ordinance must be observed.

Make sure to have a local operating permit available and observe the associated conditions. In addition to this you must observe environmental requirements and local laws on the following points:

- Personnel safety (accident prevention regulations)
- Safety of work materials and tools (safety equipment and maintenance)
- Disposal of products (laws on wastes)
- Disposal of materials (laws on wastes)
- · Cleaning (cleansing agents and disposal)

Connections

Operators shall make sure prior to operating the instrument that during installation and initial start-up the local regulations (such as regulations for electrical connection) are observed.

page 18 NF 600 - rev. 03 / 22.10.2019

9 Personnel requirements

Installation, commissioning and maintenance shall be executed only by personnel meeting the demands as follows:

- Expert personnel with relevant training and appropriate qualification
- · Personnel authorised by the plant operator

Qualified personnel

within the context of this documentation or the safety notes on the product itself are persons who are sufficiently familiar with installation, mounting, starting up and operation of the product and who have the relevant qualifications for their work; for example:

- I. Training, instruction or authorisation to activate/deactivate, isolate, ground, and mark electric circuits and devices/systems according to the safety engineering standards.
- II. Education and instruction according to the standards of safety engineering regarding the maintenance and use of adequate safety equipment.
- III. First aid training

Delivery, Storage and Transport

10 Delivery

The standard delivery of the NivuFlow 600 basically contains:

- Transmitter type NivuFlow 600 (according to shipping documents)
- Instruction manual (incl. certificates of conformity) containing any relevant information on how to operate the NivuFlow 600

Check extra accessories depending on your order and by using the delivery note.

11 Reception inspection

Check the packaging for visible damage immediately after receipt. Any possible damage in transit shall be instantly reported to the carrier. Furthermore a written report shall be sent to NIVUS GmbH in Eppingen.

Incomplete deliveries shall be reported in writing either to your local representative or directly to the NIVUS GmbH in Eppingen within two weeks.

Important note

Objections cannot be rectified later!

12 Storage

The permissible maximum values regarding ambient conditions such as temperature and humidity according to Sect. "16 Specifications" shall be necessarily observed.

Protect the instrument from corrosive or organic solvent vapours, radioactive radiation as well as strong electromagnetic radiation.

Use the original packaging for storage.

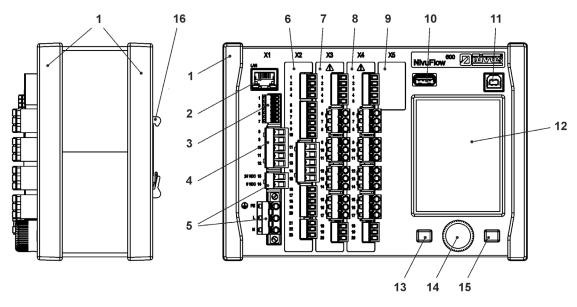
13 Transport

Protect the instrument from heavy kicks, impacts, shocks or vibrations.

Use the original packaging for transport.

Otherwise, the same rules apply with regard to external influences as for storage (see Sect. "12 Storage").

14 Return


In case of a required reshipment return the unit at customer cost to NIVUS GmbH in Eppingen using the original packaging.

Insufficiently franked shipments will not be accepted!

page 20 NF 600 - rev. 03 / 22.10.2019

Product specification

15 Product Construction and Overview

- 1 Trims/cover strips (only for installation in control cabinets)
- 2 Interface (LAN)
- 3 Bus interface (RS485/RS232)
- 4 Place marker for connection air ultrasonic sensor (RS485) (NOT for NF 600; for identically constructed devices only)
- 5 Power supply
- 6 Terminal block (see Sect. "21.2 Plans of terminal connections")
- 7 Terminal block (see Sect. "21.2 Plans of terminal connections")
- 8 Terminal block (see Sect. "21.2 Plans of terminal connections")
- 9 Terminal block (see Sect. "21.2 Plans of terminal connections")
- 10 USB-A interface (data transfer, parameter backup, device update)
- 11 USB-B interface (service)
- 12 Graphics display
- 13 Left function key
- 14 Rotary pushbutton
- 15 Right function key
- 16 DIN rail fastening

Fig. 15-1 Device setup NivuFlow 600 enclosure type E0/E1

15.1 Dimensions of enclosure

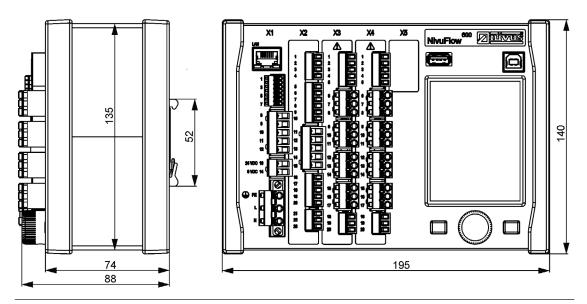


Fig. 15-2 Dimensions of NivuFlow 600 enclosure type E0

Fig. 15-3 Dimensions of field enclosure NivuFlow

page 22 NF 600 - rev. 03 / 22.10.2019

15.2 Connectable sensors

You can find the connectable NIVUS sensors and their data or information on their mounting in the documents "Technical Instructions Transit Time Sensors" and "Installation Instructions Transit Time Sensors".

These documents are delivered with the ordered sensors. Alternatively, they are available for download at www.nivus.com.

15.3 Device identification

The instructions contained within this manual are valid only for the type of device specified on the title page.

The name plate is fixed on the side of the enclosure and contains the following:

- Name and address of NIVUS GmbH
- · CE label
- · Information on type and series incl. article and serial number
- Year of manufacture: the first four digits of the serial number represent the year and the week number of manufacture (1924.....)
- Power supply

In case of enquiries and ordering replacement parts it is important to specify article number as well as the serial number of the respective transmitter or sensor. This ensures correct and quick processing.

Note

Check the delivered instrument for accordance with your order by identifying the nameplate.

Check the nameplate for correct specification of the power supply.

The declaration of conformity is located at the end of the manual.

Nameplates

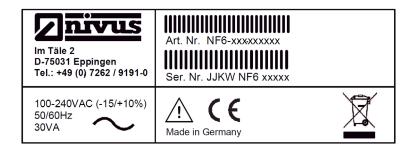


Fig. 15-4 Nameplate AC version

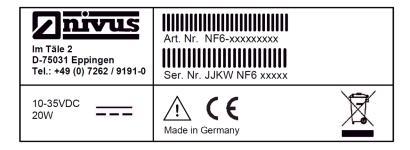


Fig. 15-5 Nameplate DC version

16 Specifications

ugged and screwed tension clamp terminal block C: 30 VA / DC: 20 W relay energised, 230 V AC: 14 W (rounded), up to eight transit time ensors 1 MHz N rail aterial: aluminium and plastic eight: approx. 1,300 g eld enclosure aterial: polycarbonate PC	
C: 30 VA / DC: 20 W relay energised, 230 V AC: 14 W (rounded), up to eight transit time ensors 1 MHz N rail aterial: aluminium and plastic eight: approx. 1,300 g eld enclosure aterial: polycarbonate PC	
relay energised, 230 V AC: 14 W (rounded), up to eight transit time ensors 1 MHz N rail aterial: aluminium and plastic eight: approx. 1,300 g eld enclosure aterial: polycarbonate PC	
N rail aterial: aluminium and plastic eight: approx. 1,300 g eld enclosure aterial: polycarbonate PC	
aterial: aluminium and plastic eight: approx. 1,300 g eld enclosure aterial: polycarbonate PC	
eight: approx. 1,300 g eld enclosure aterial: polycarbonate PC	
eld enclosure aterial: polycarbonate PC	
aterial: polycarbonate PC	
• •	
1.1.1.1	
eight: approx. 3,800 g (incl. NF 600)	
N rail	
20 / IK08	
2) Field enclosure	
67 (option: IP68) / IK08	
otection class I	
vervoltage category II	
egree of pollution 2	
C unit for use in altitudes up to 3000 m above MSL.	
relay voltages >150 V the use is restricted to an altitude of max. 2000 \mbox{m}	
ove MSL (AC and DC units)	
C: -20+70 °C	
C: -20+65 °C	
0+80 °C	
50 °C	
%, non-condensing	
T full graphic colour daylight display,	
0x320 pixels, 65,536 colours	
alog mode using rotary pushbutton and two function keys, in English,	
erman, French, Italian, Spanish, Portuguese, Swedish, Danish, Finnish,	
olish, Hungarian, Romanian, Czech and Russian	
ug with spring-cage terminal clamps	

page 24 NF 600 - rev. 03 / 22.10.2019

Inputs	Digital input: - electrically isolated 524 V nominal, input current typically < 5 mA for max. input voltage U _{in} =30 V, input current typically > 1.5 mA for min. input voltage U _{in} =3 V Analog input: - 4 mA20 mA with 12 bit resolution for analog input values, accuracy ±0.4 % of measuring range final value (20 mA), load 91 Ohm
Outputs	Digital output: - bistable relay SPDT, maximum load 230 VAC / 2 A (cos 0.9 phi), recommended min. control signal 10 mA @ 12 V
	- relay SPDT, maximum load 230 VAC / 2 A (cos 0.9 phi), recommended min. control signal 10 mA @ 5 V
	Analog output: - 0/4 mA20 mA, load 500 Ohm, 12 bit resolution, accuracy higher than ±0.1 % at 20 °C
Data memory	Internal 1.0 GB, for programming and readings memory; via USB stick frontside read out
Storage cycle	30 seconds to 5 minutes
Communication	- HART (Slave) via AO1
	- Modbus TCP via networks (LAN/WAN, Internet)
	- Modbus RTU via RS485 or RS232
	- Internet via Ethernet

Table 16-1 Specifications

Sensors

Observe the specifications of the associated sensors as described in the respective instruction manuals or technical descriptions.

17 Configuration

17.1 Device Types

The NivuFlow is available in different versions, which mainly vary in terms of the number of connectable paths/sensors and the number of measurement sites. The article number can be found on the nameplate (see "Nameplates" on page 23).

NF6- Flow measurement transmitter type NivuFlow

Design

0 for permanent full pipe lines

Type

T2E0 up to 2 acoustic paths, 2x DI, 2x DO, 2x AI, 2x AO; construction: DIN rail/panel mounting (cabinet)

T2E1 up to 2 acoustic paths, 2x DI, 2x DO, 2x AI, 2x AO; DIN rail, prepared for mounting into NIVUS field enclosure, Type *ZUB0 NFW0*

TRE0 up to 2 acoustic paths, 7x DI, 5x DO, 5x AI, 4x AO; construction: DIN rail/panel mounting (cabinet)

TRE1 up to 2 acoustic paths, 7x DI, 5x DO, 5x AI, 4x AO; DIN rail, prepared for mounting into NIVUS field enclosure, Type *ZUB0 NFW0*

T4E0 up to 4 acoustic paths, 2x DI, 2x DO, 2x AI, 2x AO; construction: DIN rail/panel mounting (cabinet)

T4E1 up to 4 acoustic paths, 2x DI, 2x DO, 2x AI, 2x AO; DIN rail, prepared for mounting into NIVUS field enclosure, Type *ZUB0 NFW0*

TME0 Measurement transmitter to connect NFE extension modules (up to 32 paths), 2x DI, 2x DO, 2x AI, 2x AO; construction: DIN rail/panel mounting (cabinet)

TME1 Measurement transmitter to connect NFE extension modules (up to 32 paths), 2x DI, 2x DO, 2x AI, 2x AO; DIN rail, prepared for mounting into NIVUS field enclosure, Type *ZUB0 NFW0*

TZE0 Measurement transmitter to connect NFE extension modules (up to 32 paths), 7x DI, 5x DO, 5x AI, 4x AO; construction: DIN rail/panel mounting (cabinet)

TZE1 Measurement transmitter to connect NFE extension modules (up to 32 paths), 7x DI, 5x DO, 5x AI, 4x AO; DIN rail, prepared for mounting into NIVUS field enclosure, Type *ZUB0 NFW0*

Power supply

A0 100...240 V AC
D1 10...35 V DC
Firmware extensions

0 none
1 HART-Protocol
Number of measurement sites
1 one measurement site
3 two measurement sites (types T4 and TM only)

Table 17-1 Product structuring

NF6- 0

page 26 NF 600 - rev. 03 / 22.10.2019

Functional Description

18 Operating Ranges

The NivuFlow 600 is a permanent measurement system for flow measurement. It is primarily designed for measuring slightly contaminated to clear, pure water-based liquids of various compositions.

The NivuFlow 600 is used in fully filled channels and pipes of various geometries and dimensions.

The two points of measurement of types T4 and TM are primarily used to carry out measurements at two different points within a channel. The associated combined measurement point (Combi) calculates the common measurement, depending on the parameterisation.

Alternatively, the two measurement points can also carry out measurements on two different channels. The combined measurement point is then usually not used.

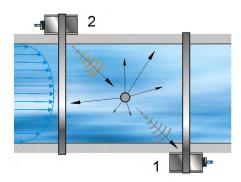
You can find the connectable NIVUS sensors and their data or information on their mounting in the documents "Technical Instructions Transit Time Sensors" and "Installation Instructions Transit Time Sensors".

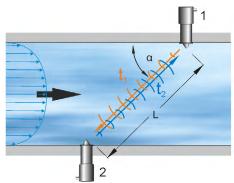
These documents are delivered with the ordered sensors. Alternatively, they are available for download at www.nivus.com.

Several sensor pairs are used for a more accurate recording of the flow speed at a common point of measurement.

Note on the measurement place

The flow velocity is measured by means of the ultrasound transit time principle. This measurement methodology requires that the solid content (dirt particles, gas bubbles or similar) is not too high to enable ultrasonic signal transmission between both sensors due to reflections and hence damping.




Fig. 18-1 Signal damping by interfering particles (example with clamp-on sensors)

19 Functional Principle

19.1 Flow velocity detection

The flow velocity is determined by using the ultrasonic transit time principle.

- 1 sensor 1
- 2 sensor 2
- α defined angle
- t₁ time of the impulse **towards** direction of flow
- t₂ time of the impulse **with** direction of flow
- L path length

Fig. 19-1 One-path transit time measurement principle

This measurement principle is based on directly measuring the transit time of acoustic signals between two ultrasonic sensors, the so-called hydro-acoustic converters.

The transit time difference method does not determine the average path velocity, but the effective velocity of sound propagation upstream (decelerated due to flow) and downstream (accelerated due to flow).

Two sound impulses are transmitted consecutively and the different transit times between transmitter and receiver are measured.

- The upstream impulse needs a time t₁.
- The downstream impulse needs a shorter time t₂.

Sound heading downstream will reach the receiver within a shorter period than sound heading upstream. The difference between the transit times is proportional to the average flow velocity within the measurement path.

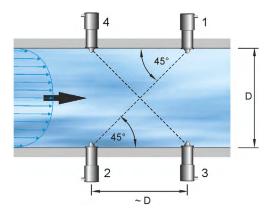
There is no transit time difference when both sensors receive the transmitted ultrasonic impulses simultaneously. There is no measurable flow available.

The NivuFlow 600 works with both clamp-on sensors and wetted sensors. The clamp-on sensors are installed on the outside of the pipe. In this case the transit time through the pipe wall is calculated and considered.

In order to determine the flow rate, the cross section as well as the flow geometry of the pipe, the canal or the water body must be known.

Here the formula below is used:

$$v = \frac{L}{2} \cdot \left[\frac{1}{t_2} - \frac{1}{t_1} \right]$$


given:

- L = length of acoustic measurement path between sensors 1 and 2
- v = average flow velocity between sensors 1 and 2 along the measurement path

The more paths are used in the asymmetrical or disturbed profile and distributed in the flow

page 28 NF 600 - rev. 03 / 22.10.2019

cross-section, the more accurately the flow can be determined.

- 1 Sensor 1, path 1
- 2 Sensor 2, path 1
- 3 Sensor 1, path 2
- 4 Sensor 2, path 2
- D Pipe diameter (at sensor installation in an angle of 45°)

Fig. 19-2 Two-path transit time measurement principle

If the sensors are installed in an angle of 45°, the distance between sensors 1 and 2 or sensors 3 and 4 is equal to the inside pipe diameter.

19.2 Flow Calculation

In the case of using single-path or multi-path installations in one level under the condition

$$Q = v_{average} \cdot A$$
and given

- v_{average} = average flow velocity and
- A = cross-sectional flow area,

a velocity coefficient "k" is introduced to compensate for the difference between the measured velocity $v_{_{q}}$ and the average velocity $v_{_{average}}$ within the cross-sectional area.

The velocity coefficient "k" depends on the Reynolds number and is therefore not a constant. Reynolds number and velocity coefficient are not visible or changeable, they are integrated in the software and are included in the background calculations.

The flow rate can then be calculated by using the signal transit time as follows:

$$Q = k \cdot A \cdot v_g = k \cdot A \cdot \frac{L}{2 \cdot \cos \alpha} \cdot \left[\frac{1}{t_2} - \frac{1}{t_1} \right]$$

Installation and Connection

20 General Installation Instructions

Ensure that the following instructions regarding "Electrostatic discharge" (ESD) and installation place are followed during installation.

Follow applicable legal or operational guidelines.

Improper handling can result in injury and/or damage to the equipment.

20.1 Avoidance of electrostatic discharge (ESD)

ESD risks

Maintenance procedures which do not require power supplied to the instrument shall not be carried out before the unit has been disconnected from mains power in order to minimise danger and ESD risks.

Disconnect the NivuFlow from mains power.

The sensitive electronic components inside the unit may get damaged by static electricity. NIVUS GmbH recommend the following steps to prevent the device from getting damaged due to electrostatic discharge:

- Discharge static electricity from your body before touching the instrument's electronic components.
- Avoid unnecessary movements to reduce the risk of building up static electricity.

20.2 Installation and Mounting versions

The transmitter is available in two different mounting versions:

- Type E0 for direct DIN rail mounting in control cabinets or similar enclosures
- Type E1 special DIN rail mounting enclosure without cover stripe, with extended DIN rail fastening
 - Installation in NIVUS field enclosure ZUB0 NFWx

Pre-assembled units with simultaneous order

As soon as NivuFlow 600 Type E1 and the field enclosure are ordered simultaneously the units are shipped in pre-assembled condition.

CAUTION

NivuFlow 600 Type E0 not suitable for installation in NIVUS field enclosure

It is not possible to install a NivuFlow 600 Type E0 in a NIVUS field enclosure unless the transmitter is **converted** to a Type E1 unit. The conversion and the modification of connections can be carried out by NIVUS.

page 30 NF 600 - rev. 03 / 22.10.2019

20.3 Choosing the installation place

The NivuFlow with DIN rail fastening is conceived for installation in control cabinets.

- Make sure there is adequate ventilation at the installation place, such as fans or air slits.
- Make sure that any existing disconnectors (power switch) remain easily accessible during installation.

The measurement transmitter can also be installed in field enclosures or similar. NivuFlow 600 is not suitable to be installed directly on site without protective measures due to protection class. To do so, use the optionally available field enclosure by NIVUS.

The following precautions should be taken to ensure safe installation at the installation site:

- Protect the transmitter from direct sunlight. Install a sun shade if required.
- Avoid mounting the transmitter close to objects with strong electromagnetic fields (frequency converters, high voltage powerlines or similar).
- Observe the permissible ambient temperature (see Sect. "16 Specifications").
- Do not expose the transmitter to strong vibrations or mechanical shock.

At the mounting place always avoid:

- Corrosive chemicals or gases
- Radioactive radiation

20.4 Transmitter fastening on DIN rail in control cabinets

Assemble required materials beforehand

Mounting materials and tools are **not** part of the standard delivery.

- For fastening use a DIN rail type TS35 according to EN 50022 with a minimum length of 140 mm.
 - 1. Fasten the rail horizontally in the intended enclosure/control cabinet by using at least two screws.
 - 2. Hook the transmitter into the DIN rail from below. The unit will snap in as soon as you exert slight pressure in the direction of the DIN rail.

Now you can begin to install the electrical components and to connect the sensors.

20.5 Field enclosure fastening and preparing electric installation

Assemble required materials beforehand

The fastening material is **not** part of the standard delivery but should be specified and chosen individually depending on the place of installation.

The NIVUS field enclosure can be installed permanently once the appropriate place of installation has been chosen. A basic condition is safe, durable and stable installation.

Required materials and auxiliary tools

- 6x screws M5, M6 or other screws sufficient for 6.5 mm diameter for proper fastening on surfaces (type and lengths of screws depending on material and quality of the surface)
- 6x dowels may be required (depending on material and quality of the surface as well as the screws used)

Preliminaries

Procedure:

- 1. Select fastening screws (type and length of screw) and accessories considering:
 - conditions and load capacity of the mounting surface (wood, metal, concrete, brickwork or similar)
 - required dowels or other auxiliary material

Tip:

When determining the length of the screws necessarily include the material thickness of approx. 17 mm of the mounting brackets.

2. If required drill dowel holes and insert the dowels.

Fastening the field enclosure

Procedure:

 Fasten the field enclosure (Fig. 20-1 no. 3) on both lateral brackets by using the six previously selected screws through the fastening holes (6.5 mm diameter, Fig. 20-1 no. 6).

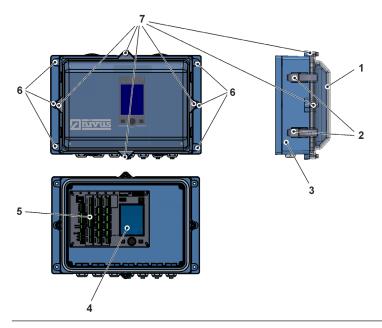


Fig. 20-1 Fastening the field enclosure

page 32 NF 600 - rev. 03 / 22.10.2019

2. Remove the transport protection film from the clear view cover (Fig. 20-1 no. 1) if available.

Tip:

The protective film will harden upon exposure to UV radiation and possibly cannot be removed later without leaving some residue. Readability may be strongly impaired due to the changes to the protective film.

New clear view covers can be purchased from NIVUS for an extra charge and can be easily replaced by the user.

3. Install the weatherproof cover if available.

Preparing the field enclosure for electric installation

- Procedure:
 - 1. To remove the clear view cover (Fig. 20-1 no. 1) from
 - enclosure type *ZUB0 NFW0* (protection IP67): Open the four lateral release clamps (Fig. 20-1 no. 2) and remove the enclosure cover.
 - enclosure type ZUB0 NFW0 IP68 / ZUB0 NFW10 4PFAD (protection IP68): Remove the four cylinder head screws M4x25 (Fig. 20-1 no. 7) and the washers, open the four lateral release clamps (Fig. 20-1 no. 2) and remove the enclosure cover.
 - 2. To remove the blue inside cover loosen the four round head screws 3.5x25 in the corners and remove the cover. Now the transmitter including the display (Fig. 20-1 no. 4) and the terminal clamps (Fig. 20-1 no. 5) are fully accessible.
 - 3. The unit is reassembled in reverse order after being wired. Check as well that
 - the gaskets are undamaged and free of dirt,
 - the screws are firmly tightened.

Otherwise the IP67/IP68 protection class cannot be guaranteed.

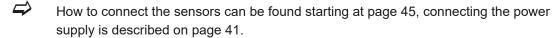
21 Electrical Installation

DANGER

Danger from electrical current

Disconnect the unit from mains power.

Working on electric wiring may cause electric shock. Observe electric information provided on the nameplate.


Non-observance may result in personal injuries.

Note

Observe the national installation regulations.

- Be sure to take the following precautions:
 - 1. Installation work should be carried out by qualified personnel only.
 - 2. For electrical installation the local regulations in the respective countries (in Germany e.g. VDE 0100) shall be referred to.
 - 3. Further statutory standards (local), regulations and technical rulings have to be taken into account.
 - For installation in wet environments or in areas subject to flooding risk, extra
 protection such as by using a residual-current-operated protective device (RCD) is
 necessary if required.
 - 5. Regarding Ex protection check whether the instrument's power supply needs to be integrated into the facility's emergency shut-down concept.
 - 6. Before feeding the rated voltage, transmitter and sensor installation must be correctly completed. Check that the installation is correct.

21.1 Wiring to the Terminal Blocks

All NivuFlow transmitters are equipped with push-in tension clamp terminals. The use of these push-in tension clamp terminals enables an easy pre-installation of the transmitter. This allows verifying individual sensors, input and output signals etc. as well as easy transmitter replacement if required.

The tension clamp terminal blocks are suitable for connecting single-wire and multiple wire copper cables. These cables are vibration-proof.

To open the contacts on the tension clamp terminal blocks, use gentle pressure with a slot screwdriver on the front-side orange elements.

To connect the power supply, push-in and screw-type tension clamp terminal blocks are used. To connect the power supply, use a slot screwdriver with a blade width of 3.0...3.5 mm.

Important note

Unplug and connect the tension clamp terminal blocks only in de-energised condition disconnected from mains power.

page 34 NF 600 - rev. 03 / 22.10.2019

DANGER

Danger from electrical current

Multiple wire cables (strands) of the AC power supply circuit as well as of relay connections shall be equipped with ferrules featuring an isolated protective collar (plastic ferrule) to avoid danger due to several protruding wires.

Non-observance may result in personal injuries.

Tension clamp terminal block	Power	Bus/	Terminals O/I
	supply	Network	etc.
Wire cross-section,	0.22.5	0.20.5	0.141.5
rigid cables in [mm²]			
Wire cross-section,	DC only:	0.20.5	0.141.5
flexible cable in [mm²]	0.22.5		
Wire cross-section (flexible) with ferru-	DC only:	0.250.5	0.251.5
le blank in [mm²]	0.252.5		
Wire cross-section (flexible) with ferru-	0.252.5	Undefined	0.250.5
le with plastic sleeve in [mm²]			

Table 21-1 Wire cross-section

The measurement transmitter NivuFlow 600 is available in different **Types**:

- Type T2
- Type TR
- Type T4
- Type TM
- Type TZ

See also Sect. "17.1 Device Types"

All types have identical terminal designations. These blocks are functionally assigned to the different connection areas. Types T4, TM and TZ have additional terminal blocks.

21.2 Plans of terminal connections

DANGER

Risk of electric shock

Do not remove the tension clamp terminal block from terminal block X1 (terminals 15...17). This tension clamp terminal block is to connect the protective conductor as well as the AC power supply and is an integral part of the instrument. Operate the instrument with the tension clamp terminal block screwed on only.

Non-observance may result in personal injuries.

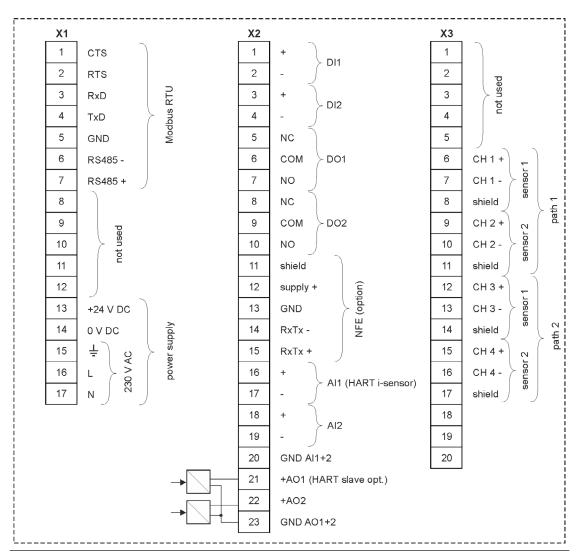


Fig. 21-2 Terminal connections NivuFlow 600 Type T2

page 36 NF 600 - rev. 03 / 22.10.2019

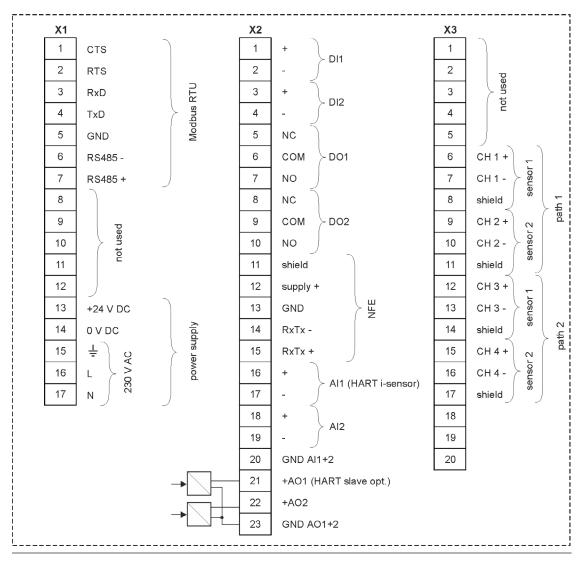


Fig. 21-3 Terminal connections NivuFlow 600 Type TM

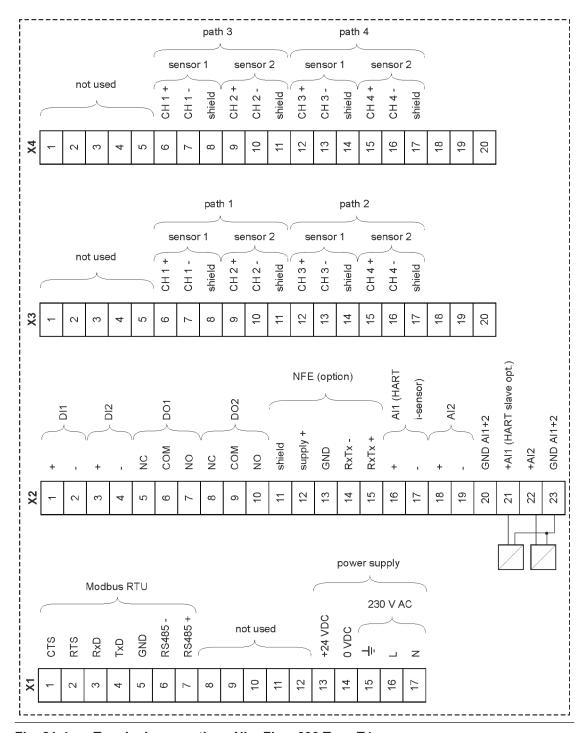


Fig. 21-4 Terminal connections NivuFlow 600 Type T4

page 38 NF 600 - rev. 03 / 22.10.2019

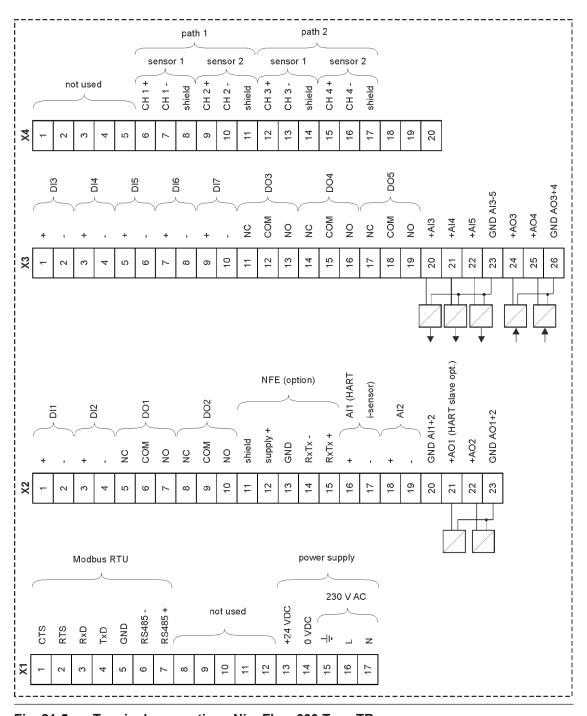


Fig. 21-5 Terminal connections NivuFlow 600 Type TR

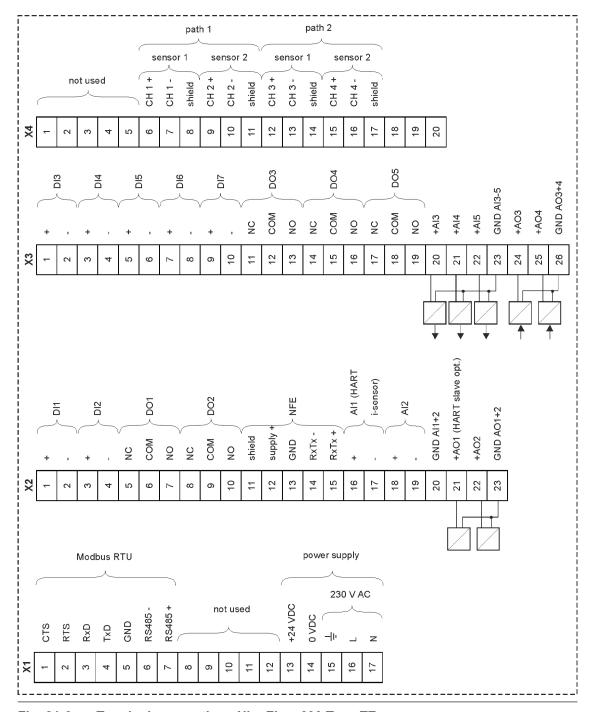
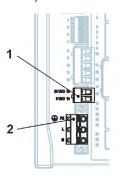



Fig. 21-6 Terminal connections NivuFlow 600 Type TZ

page 40 NF 600 - rev. 03 / 22.10.2019

21.3 Switching on voltage supply

Depending on the type of NivuFlow used the unit can be powered with 100...240 V AC (-15 / +10 %) or with 10...35 V DC.

- 1 24 V DC connection
- 2 230 V AC connection

Fig. 21-7 Electrical connections of power supply NivuFlow

DANGER

Risk of electric shock

Do not remove the tension clamp terminal block from terminal block X1 (terminals 15...17).

This tension clamp terminal block is to connect the protective conductor as well as the AC power supply and is an integral part of the instrument. Operate the instrument with the tension clamp terminal block screwed on only.

Non-observance may result in personal injuries.

Operation with alternating current - direct current

A transmitter with 24 V **DC** cannot be operated with alternating current (AC). Further, it is not possible to operate a 230 V **AC** transmitter with 24 V direct current (DC).

21.3.1 Power supply DC

The DC version can be directly operated from the 24 V direct current network of a control cabinet.

Requirements

- Input voltage available at the input clamps:
 - At maximum load (20 W) minimum 10 V
- Clamp voltage:
 - At no-load operation maximum 35 V

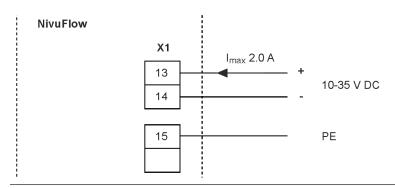


Fig. 21-8 DC connections of power supply

21.3.2 Power supply AC

DANGER

Danger from electrical current

Do not operate the unit if the terminal clamp blocks above the screw flange are not tightly screwed.

The terminal block X1 (terminals 15...17) for connecting the earth conductor and AC power supply is an integral part of the device. It is a non-plug connection.

Non-observance may result in personal injuries.

DANGER

Danger from electrical current

The power supply must be separately protected by a 6 A slow-blow fuse and has to be isolated from other facility parts by a separate turn-off, e.g. by using an automatic cut-out with >B< characteristics). This separator should be visibly marked.

Non-observance may result in personal injuries.

The AC version of NivuFlow can be directly operated from the low-voltage network.

The AC power supply requirements are described in Sect. "16 Specifications".

Requirements

- Cross-sectional dimension of the power supply wires:
 - Minimum 0.75 mm²
 - According to IEC 227 or IEC 245

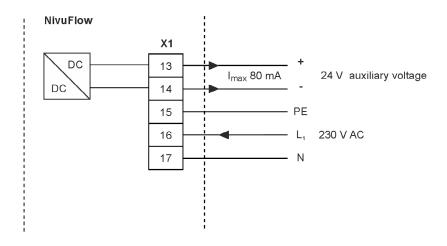


Fig. 21-9 AC power supply wiring

page 42 NF 600 - rev. 03 / 22.10.2019

21.4 Relays

Contact reliability deteriorates if the minimum make/break current is lower than specified.

Observe the wiring and switching specifications of the relays in Sect. "16 Specifications".

DANGER

Danger from electrical current – Measures to prevent accidental contacts

Contact protection according to the requirements as specified in EN 61010-1:2010 is not guaranteed in the event of relay voltages >150 V due to the testing pin terminal of the relay clamp blocks.

Take all necessary precautions against electrical shock according to the laws and regulations! For example: Open the cabinet/field enclosure only by the use of a tool or key, or use a fault-current circuit breaker or similar.

Non-observance may result in personal injuries.

DANGER

Danger from electrical current - Protect Relay Contacts

The relay contacts of the instrument shall be protected using 6 A slow-blow fuses if voltages in the low voltage range (such as AC supply voltages) are to be switched via the instrument's relay contacts. Moreover these contacts shall be designed so as to be switched off independent of other circuit parts.

DC units shall be equipped with an appropriate protective earth conductor in order to avoid dangerous voltages or currents.

Non-observance may result in personal injuries.

22 Installation and Connection of Sensors

You can find detailed installation instructions for the individual sensor types in the according Installation Instructions Manual.

Note

Always ensure compliance with the safety regulations during installation works.

22.1 Sensor Installation Principles

The placing of sensors is vital for the reliability and accuracy of measurements. Therefore ensure proper hydraulic conditions and appropriate calming sections at the installation site. Sensor types as well as the respective fastening methods shall be determined individually depending on the place of measurement.

Conditions on how to select calming sections and the installation of sensors are described in the "Installation Instructions Transit Time Sensors".

Operational parameters need to be assigned to the point of measurement before or during installation. Please refer to the documentation for the respective system for details on how to prepare the point of measurement and its dimensions.

The parameterization of the measurement points is described in the Sect. "Setting Parameters" starting on page 65.

22.2 Installation of Clamp-On Sensors

Clamp-on sensors allow for contactless measurement in closed and full pipelines. Here the sensors are clamped from the outside onto pipes. The instrumentation will not impact the liquid and will not change the medium's flow profile.

A detailed description of the sensors and their installation can be found in the "Technical Instructions Transit Time Sensors" and/or "Installation Instruction Transit Time Sensors".

22.3 Installation of Wet Sensors

Engage pipeline experts

Wet sensors shall be installed only by a pipeline company or a plumber. The tightness of pipes must be guaranteed at all times.

The wetted sensors are installed through the pipe walls (pipe sensors) or inside the pipe (wedge sensors). They are in contact with the medium during the measurement in closed and fully filled pipes.

A detailed description of the sensors and their installation can be found in the "Technical Instructions Transit Time Sensors" and/or "Installation Instruction Transit Time Sensors".

22.4 Path arrangements

In the arrangement of the measurement paths, a basic distinction is made between "Diametral" and "Chordal".

A "diametral" arrangement of the measurement paths always goes through the centre of the pipe. A "chordal" arrangement crosses the pipe at any point and is preferably used if the measurement paths are to be installed on several (parallel) planes in the pipe.

Here are some examples of "diametral" path arrangements:

- "Diametral \" mode
- "Diametral V" mode
- "Diametral W" mode

All arrangements are not always available depending on the presetting and pipe diameter.

The mounting distance between both sensors is the "clear distance".

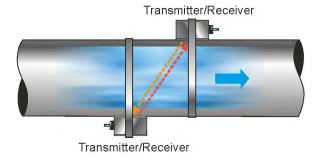


Fig. 22-1 Example "Diametral \" mode

page 44 NF 600 - rev. 03 / 22.10.2019

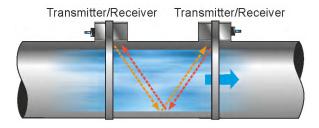


Fig. 22-2 Example "Diametral V" mode

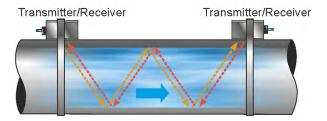


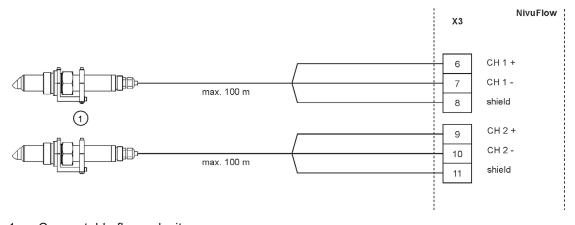
Fig. 22-3 Example "Diametral W" mode

22.5 Cable and Cable length for connecting the sensors

Between sensor and transmitter

The cables connected to the sensors at the factory must be used for the total distance between the NIVUS sensors and the NivuFlow transmitter.

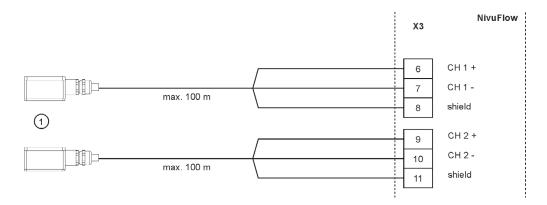
The signal cable is not intended for laying directly in the ground. If the signal cable is to be laid in soil, concrete, etc., it must be laid in protective pipes or protective hoses with a sufficiently dimensioned inner diameter.


The sensors for **a measurement path** basically have the same cable length. It is not permissible to extend or shorten the sensor cable.

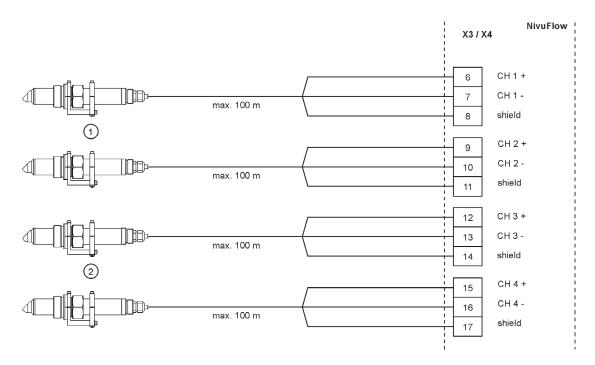
22.6 Sensor Connection to NivuFlow

Connectable sensors see Sect. "15.2 Connectable sensors".

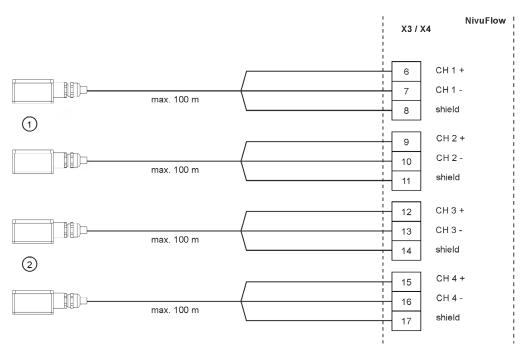
The connected sensors are used to determine the flow velocity.


22.6.1 Sensor connection 1-path measurement / 2-path measurement

1 Connectable flow velocity sensors


Fig. 22-4 Connecting 1 pair of flow velocity sensors

1 Connectable clamp-on sensors


Fig. 22-5 Connecting 1 pair of clamp-on sensors

- 1 Connectable flow velocity sensors path 1
- 2 Connectable flow velocity sensors path 2

Fig. 22-6 Connecting 2 pairs of flow velocity sensors

page 46 NF 600 - rev. 03 / 22.10.2019

- 1 Connectable clamp-on sensors path 1
- 2 Connectable clamp-on sensors path 2

Fig. 22-7 Connecting 2 pairs of clamp-on sensors

22.7 Connection to/via Extension module NFE

Connecting the transmitter and the sensors to an extension module or connecting the extension modules to each other is explained in the "Technical Instructions for Extension module NFE".

The technical description is shipped with the expansion module and is available for download at www.nivus.com.

23 Overvoltage Protection Measures

Transmitters and their terminal connections should be protected against potential voltages surges (such as lightning strikes in transmission lines) by additional overvoltage protection measures.

Suitable measures need to be taken for the individual system parts (power supply, mA-inputs/outputs, communication interfaces and sensor connections).

If an overvoltage event has occurred, it is essential to check the functionality of the overvoltage protection components and replace them if necessary.

Adequate overvoltage protection measures required

Protective measures which are inadequately carried out or omitted in the specific installation and which result in damage to or destruction of the device or the sensors result in a limitation of the warranty (see Sect. "5 Warranty").

Consequently, overvoltage risks and measures should be considered in the design of the instrument installations. Laying cables underground or intercepting mains faults outside the instrument installation are among the measures that can be taken on site. These measures reduce the probability of an overvoltage event.

The transmitter earthing connection is used to discharge high-frequency interference voltages from sensor shields ("functional earth") and at the same time to be the touch protection ("protective earth") in the case of low voltage.

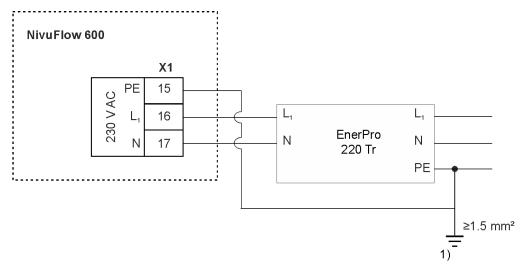
If interference voltages are not properly discharged, noise levels can rise, resulting in corrupted or **faulty measurements**; **nearby electrical devices may be disturbed** by the transmitter in special cases, as well.

If necessary, install appropriate **RF interference suppression capacitors** (10...100 nF) to discharge interference from the transmitter enclosure (top hat rail (DIN)/ mounting rail) or directly from the sensor shields. The currents and voltages occurring in the event of an overvoltage need to be taken into account as well in this context.

Depending on the instrumentation design, directly earthing the sensor shields can also be beneficial.

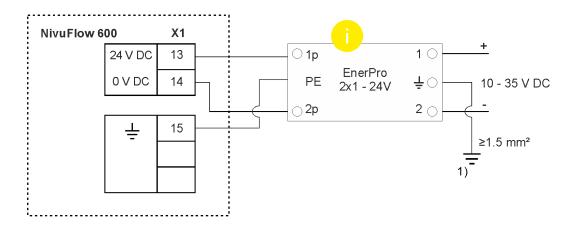
23.1 Overvoltage Protection for Power Supply

NIVUS recommends type EnerPro 220Tr surge arrestors (for a 100-240 V AC power system) and EnerPro 24Tr (for 24 V DC power supply) for the mains supply.



Observe the connection direction

Observe the non-reversed connection (p-side to transmitter) as well as a correct, straight wiring supply. Ground (earth) must lead to the unprotected side.


The overvoltage protection devices are ineffective if wired incorrectly.

page 48 NF 600 - rev. 03 / 22.10.2019

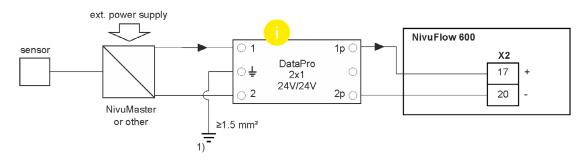
1) Low impulse earthing resistance required

Fig. 23-1 Overvoltage protection for power supply AC

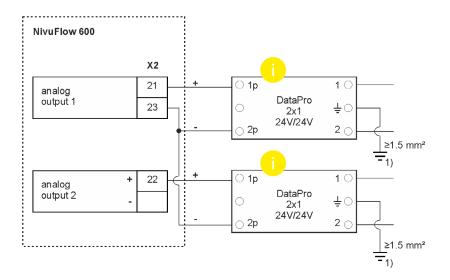
- 1) Low impulse earthing resistance required
- Do not reverse protected (p) and unprotected sides of overvoltage protection

Fig. 23-2 Overvoltage protection for power supply DC

23.2 Overvoltage Protection for mA-Inputs/Outputs


NIVUS recommends type DataPro 2x1 24/24 Tr surge arrestors for mA-inputs and mA-outputs.

Observe the connection direction


Observe the non-reversed connection (p-side to transmitter) as well as a correct, straight wiring supply. Ground (earth) must lead to the unprotected side.

The overvoltage protection devices are ineffective if wired incorrectly.

- 1) Low impulse earthing resistance required
- Do not reverse protected (p) and unprotected sides of overvoltage protection

Fig. 23-3 Overvoltage protection of input from external transmitter

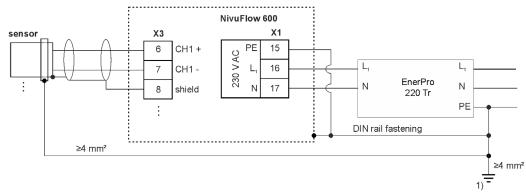
- 1) Low impulse earthing resistance required
- Do not reverse protected (p) and unprotected sides of overvoltage protection

Fig. 23-4 Overvoltage protection for analog outputs

23.3 Overvoltage protection for communication interfaces

The communication interfaces along with the connected system need to be protected and the surge protection should be designed according to the technical parameters of the system used.

page 50 NF 600 - rev. 03 / 22.10.2019


23.4 Overvoltage protection for (transit time) sensor connectors

23.4.1 Basic protection - equipotential bonding cable

NIVUS recommends that an equipotential bonding cable is used to connect the sensor enclosure to the control cabinet/transmitter ground as a basic protection measure for the transit time sensors' interfaces. The equipotential bonding cable prevents the flow of a transient equalizing current through the transmitter and the cable shields.

The equipotential bonding cable needs to be at least 4 mm² in diameter and it should run parallel to the sensor cables.

The following is an example of the use of an equipotential bonding cable.

1) Low impulse earthing resistance required

Fig. 23-5 Equipotential bonding cable betw. sensor encl. and control panel earth

23.4.2 Extended protection - overvoltage protection "SonicPro T"

"SonicPro T" surge protectors are required for the transit time sensors in non-standard applications.

Special cases are:

 Potential differences that cannot be avoided can occur between the sensor enclosure and the control panel/transmitter earthing. These potential differences may be transient.

This can be caused by

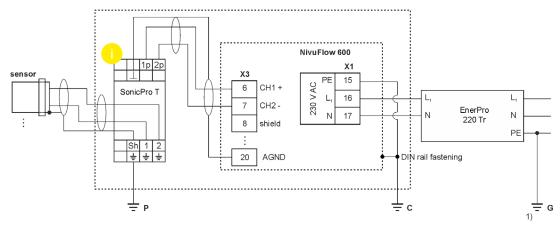
- The grounding resistance of the grounding electrode is too high. This typically means that the leakage current of the mains supply overvoltage protection device cannot be discharged to the required extent via the earth connection of the control cabinet installation, resulting in a potential difference.
- Or the equipotential bonding cable to the transit time sensors may be undersized or too long; or it is incorrectly connected or missing.
- Or a combination of these conditions.
- Overvoltages may affect the transit time sensor's enclosure directly. This effect can
 occur via the mounting device, the sensor cable or the medium (water-based liquids).

Install overvoltage protection on each sensor individually

"SonicPro T" overvoltage protectors need to be **individually installed for each** connected **transit time sensor**.

Use of "SonicPro T" surge protectors

The transmitter sensor signal terminals are electrically isolated from the sensor cables by the "SonicPro T" overvoltage protectors. The modules thus guard the transmitter from impulse voltages injected from the sensor; they can also limit a compensating current flowing to the sensors to a low level in a supply-side overvoltage event.



Observe the connection direction

Observe the non-reversed connection (p-side to transmitter) as well as a correct, straight wiring supply. Ground (earth) must lead to the unprotected side.

The overvoltage protection devices are ineffective if wired incorrectly.

The following figure shows an example of an installation powered by the AC mains with overvoltage protectors "EnerPro" (to the mains) and "SonicPro T" (to the transit time sensors). The "EnerPro" overvoltage protector may also be installed inside the control cabinet, but the separate earth connector "G" must be retained. The combination with "P" or "C" is very risky in the event of overvoltage. NIVUS recommends that the earth connectors are separated to guard against overvoltages.

- P Earth connection for the "SonicPro T" overvoltage protectors on the sensor side
- C Ground connection for transmitter installation
- G Ground connection for AC mains overvoltage protection
- 1) Low impulse earthing resistance required
- Do not reverse protected (p) and unprotected sides of overvoltage protection

Fig. 23-6 Typical installation with "SonicPro T" overvoltage protection

Three different earthing connections are shown in the drawing:

P. C and G

It is important that all three earth terminals in the installation, in particular the earth terminal "G", have a **low surge earth resistance**, as high surge leakage currents may flow.

If the impact earthing resistance of a bad earth electrode is 1 Ω , a leakage current of 5 kA will cause a peak voltage of 5000 V.

If this leakage current is routed to the control cabinet earthing via the DIN rail contact of an overvoltage element, for example, the potential of the transmitter earthing increases and a compensating current can flow through the sensor cables. There is a risk that the sensor lines, the cables or the transmitter could be destroyed.

A deep earthing system can be used, for example, to achieve low resistance earthing. If this cannot be realized at the installation site, the mutual interaction of different earth electrodes should be reduced by routing the leakage currents to different independent earth electrodes. Here, the leakage currents should be routed through conductors as widely separated as possible from one another.

page 52 NF 600 - rev. 03 / 22.10.2019

If it can be assumed in applications that no overvoltages can be induced from the sensor side, there will be no leakage currents through the earth connection "P". This can then be tied directly to the transmitter grounding "C".

All other **input/output signals** and **input/output voltages** leaving the control cabinet must also be considered in relation to overvoltages. In most cases, there is no galvanic isolation and compensating currents can flow.

In applications particularly at risk of overvoltage, an additional **low-capacitance isolating transformer** can further reduce the sensitivity to overvoltage events. However, this measure is only useful if no overvoltages are injected into the control cabinet via the earth connection.

Operation start-up

24 Notes to users

Before connecting and operating the NivuFlow the instructions below shall be followed.

This instruction manual contains all information required for the setting of parameters and for the use of the instrument. The manual is intended for qualified personnel. Appropriate knowledge in the areas of measurement systems, automation technology, control engineering, information technology and (waste) water hydraulics are preconditions for putting the NivuFlow into operation.

Read this instruction manual carefully in order to guarantee proper operation of the NivuFlow. The NivuFlow shall be wired according to the wiring diagrams in Sect. "21.2 Plans of terminal connections".

In case of doubt regarding installation, connection or the setting of parameters contact our hotline:

+49 (0) 7262 9191-955

General principles

The system shall not be put into operation before the installation has been finished and checked.

Follow the hints in the instruction manual to eliminate the risk of faulty or incorrect setting of parameters. Before you begin to set parameters, get familiar with the transmitter operation using rotary pushbutton, function keys and display.

The connection of transmitters and sensors (according to Sect. "21.1 Wiring to the Terminal Blocks", "22.6 Sensor Connection to NivuFlow" and "22.7 Connection to/via Extension module NFE") followed by the setting of the measurement place parameters.

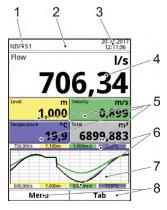
In most cases it is sufficient to set:

- Shapes and dimensions of the measurement place
- Sensors used and the according positions in the application
- · Display units and language
- Span and function of analog and digital outputs

The user interface of the NivuFlow is easy to understand. Users can make all required **basic settings** themselves.

In the case of the following requirements let either one of the legally associated companies or subsidiaries of NIVUS group or an expert company authorised by NIVUS set the parameters:

- Extensive programming tasks
- · Difficult hydraulic conditions
- Special channel shapes
- If the service specification requires a protocol on settings and errors
- · Not specially trained qualified personnel or little experience in measurement systems


page 54 NF 600 - rev. 03 / 22.10.2019

25 Operation Basics

The complete operation of the NivuFlow is handled via control elements (see Sect. "2.2 NivuFlow Operating Elements"). Two control buttons and one rotary pushbutton are available for the setting of parameters and to input required data.

The display at any time provides information on where you currently are within the menu structure and which entries you are about to modify.

25.1 Display Overview

- 1 Name of measurement place
- 2 Error message sent, information or display for active service mode
- 3 Date/time
- 4 Display range 1 (Output field 1 for flow rate; default setting)
- 5 Display range 2 (Output field 2...5 for level, average flow velocity, medium temperature and total; default setting)
- 6 Automatic scaling for display range 3
- 7 Display range 3 (trend graph on level, velocity, medium temperature and amount)
- 8 Operating display for the assignment of the function keys

Fig. 25-1 Main menu

25.2 Using the Control elements

- Select the >Main menu< by pressing the left hand function key.</p>
 - 1. Turn the rotary pushbutton to scroll through the menu. A submenu or parameter can be selected, as soon as it is highlighted blue.
 - 2. Press the head of the rotary pushbutton you will get to the next parameter level or you can enter parameter settings.

3. Repeat this process until you have arrived at the desired menu or parameter. Here you can enter names or numbers in parameters.

See Sect "25.3 Use/Entry u

See Sect. "25.3 Use/Entry using the letter block" and "25.4 Use/Entry using the numeric keypad".

Press the left hand function key to exit the menus step by step.

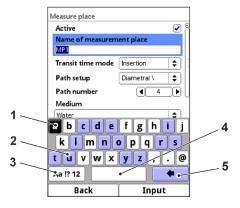
The transmitter in the background operates with the settings which have been entered at the beginning of the parameter setting.

The following request is prompted on the display not before the current parameter setting has been finished and confirmed.

Fig. 25-2 Confirmation after parameter setting

Confirm the entry with >YES<.

The password query for the parameter settings appears:


Fig. 25-3 Password query for parameter settings

Enter the password (default setting "2718").

After accepting the new parameters the NivuFlow continues to operate using these data.

25.3 Use/Entry using the letter block

Certain parameters can be labelled with names or designations. A virtual keypad is indicated in the bottom section of the display if such a parameter has been selected.

- 1 Selected character
- 2 Dual function character (highlighted blue)
- 3 Shift (upper/lower case)
- 4 Space
- 5 Back or delete button

Fig. 25-4 Keypad

Note

The use of the key pad is explained here once. Later in the manual you will be prompted to enter designations or names following this explanation.

page 56 NF 600 - rev. 03 / 22.10.2019

A shift key can be found at the bottom left of the keypad (Fig. 25-4 no. 3).

- The functions of the shift key are:
 - Upper case
 - Lower case
 - Special characters
 - Digits
- These settings allow individual names (e.g. of the measuring place).
- To **activate** this shift key rotate the rotary pushbutton until the shift key is highlighted black.
- To **enter** designations such as the measurement place name proceed as follows:
 - 1. Turn the rotary pushbutton to scroll to the lower half of the display. A virtual keypad featuring individually selectable letters is indicated.
 - 2. Turn the rotary pushbutton to navigate through the virtual keypad. Characters highlighted blue (Fig. 25-4 no. 2) feature dual functions. Holding the button depressed for approx. 1 sec. switches over to alternative function.
 - 3. Press the rotary pushbutton until the desired character is highlighted black. By pressing the character is applied to the text box automatically.
 - 4. Repeat this process until the complete text (e.g. name of the measurement place) is on the display.

25.4 Use/Entry using the numeric keypad

In certain parameters it is possible to enter dimensions or other numeric values. A number field (analogous to letter block) is indicated in the bottom section of the display if such a parameter has been selected.

Note

The use of the numeric key pad is explained here once. Later in the manual you will be prompted to enter dimensions or numerical values following this explanation.

- Press the rotary pushbutton a numeric field will appear:
 - 1. Enter the values digit by digit. Proceed the same way as described before in the keypad section.
 - When entering the dimensions observe the correct decimal places. The channel profile dimension e.g. is set to METER per default.

If **multiple dimensions shall be entered** consecutively (e.g. for rectangular profiles), you can get to the next dimension by rotating the rotary pushbutton after your former entry has been confirmed. For the next entry proceed right as described before.

25.5 Revision of parameters

- Incorrect entry can be deleted letter by letter or digit by digit by pressing the back button:
 - 1. Open the keypad.
 - 2. Turn the rotary pushbutton until you get to the >back arrow< (back button).
 - 3. Press the rotary pushbutton this will erase the wrong letter or number.
- Write subsequently until the complete name or dimension appears in the display and confirm the entry with the right hand function key.
 The name of measurement or the numerical value is taken to the main menu and is displayed there.

25.6 Menus

All menus are described in a logical programming order in Sect. "Setting Parameters".

There are up to eight basic menus available (depending on the transmitter type).

The basic menus can be viewed and selected by pressing the right hand function key.

The menus are:

Application (MP1/	It guides the commissioning personnel through the entire setting of
MP2/Combi)	parameters for the dimensions of measurement places, selection of
	sensors and analog and digital inputs and outputs, pump functions
	and diagnoses.
Data	Visually indicate charts on flow rate, level and (average) flow velo-
	city
	Visually indicate tables on 24-hour day totals
	Save data
	Save and load parameters
	Format USB stick
	Modify storage cycles and totals
System	Recall basic information on the transmitter and the connected sen-
	sors such as serial no., version, article no. and many more (needed
	in the event of queries from NIVUS)
	Settings such as language, time and data format and units can be
	modified in the >country settings<
	System time and time zones can be found in the >Time/Date<
	submenu
	Error messages are available in the according submenu
	Service level
Communication	This menu contains parameters for all communication interfaces avai-
	lable on the NivuFlow.
Display	Basic parameters such as contrast, backlight and display dimming
	can be adjusted here
	Format of the output fields (text, decimal places) can be set
Connections	The terminal strips for the inputs and outputs are assigned to the
	measurement points here for transmitters with multiple measurement
	points.
	Transmitters for only one measurement point do not have this menu at
	all.

page 58 NF 600 - rev. 03 / 22.10.2019

26 Measurement with Clamp-On Sensors

Measurements with clamp-on sensors can be carried out very easily and with little effort. The sensors are installed on the outside of the pipe.

Prior to the installation of clamp-on sensors the measuring section shall be prepared and the measurement place parameters need to be set.

For the measurement place basically the parameters below must be set:

- Number of paths and path arrangement
- · Medium to measure
- Pipe circumference or inside pipe diameter or outside pipe diameter
- · Wall thickness
- Wall material
- Inner lining material if available

The transmitter uses these settings to calculate the positions of the clamp-on sensors.

After the measurement place parameters have been set the sensor position data can be directly viewed on the display of the operator module.

Observe the instructions on how to prepare the measurement section in the "Installation Instruction Transit Time Sensors".

27 Measurement with wet sensors

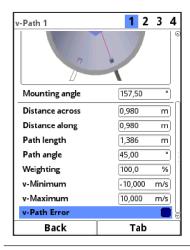
The wetted sensors are installed during the parameterization of the measurement point.

Engage pipeline experts

Wet sensors shall be installed only by a pipeline company or a plumber. The tightness of pipes must be guaranteed at any time.

The setting of parameters for a measurement place using wet sensors is essentially in line with the parameter setting procedures used for clamp-on sensors.

When selecting the >Transit Time Mode<, consider that the >Path Arrangement< option provides more variations and >Distance across< and >Path angle< are indicated additionally when viewing the mounting values.


In addition, the values for >Distance across<, >Distance along<, >Path length< and >Path angle< are not only display values. They can be changed in the same way as the mounting angle. If a value is changed, the transmitter recalculates the dependent values and displays them.

This option is required because the sensors are installed and adjusted during parameterization (installation depth and path angle).

Use in the drinking water sector

Some pipe sensors can also be used for drinking water applications and have a drinking water approval (see "Technical Instruction Transit Time Sensors").

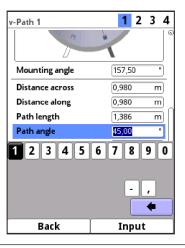


Fig. 27-1 Modifying all values

page 60 NF 600 - rev. 03 / 22.10.2019

Start-Up Examples

28 Programming a 1-path diametrically opposed Measurement

In order to set the parameters of a diametrical 1-path measurement it is necessary to enter all measurement place data into the transmitter. Prior to programming we recommend you to become familiar with Sect. "31.4 Setting parameters in Inputs and Outputs (analog and digital) Menu" starting at page 81. Sect. "29 General Programming" starting at page 65 describes how to set the measurement place parameters.

28.6.3 Simple Parameter Setting

Application Specifications:

- Clamp-on sensors
- Stainless steel (steel)
- No inner lining
- · No sediments in the pipe
- "Diametral \" path arrangement
- 1 path

Procedure:

- 1. Select "Menu" (top left).
- 2. Open >Application< menu.
- 3. Open >Measure Place< menu.
- 4. Specify measurement place name and confirm with "Enter".
- 5. Select transit time mode >Clamp-On<.
- 6. Specify path arrangement ("Diametral \") and number of paths (1 path).

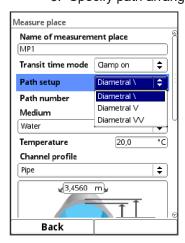


Fig. 28-1 Select path arrangement

Hints on the Medium

If you cannot find your medium to measure in the list select "User defined". Another menu opens up which can be used to specify e.g. the speed of sound within the medium.

Tip:

Various speeds of sound can be found on the Internet or contact NIVUS GmbH.

- 7. Use the selection menu to specify the medium to measure and to select/specify the current medium temperature.
- 8. Set the channel profile to "Pipe".

 The graphics area indicates a pipe featuring input fields.
- 9. Enter the pipe data (example: DN1000). Two specifications are sufficient to enter the pipe dimensions such as inside diameter and wall thickness in this example.

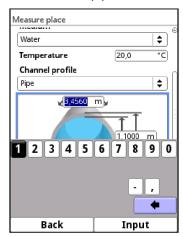


Fig. 28-2 Specifying pipe dimensions

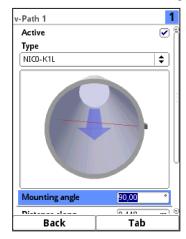
As soon as inner diameter and wall thickness are specified the transmitter automatically adds outside diameter and pipe circumference. The same applies after circumference and wall thickness have been specified. The transmitter will add the rest of the parameters.

10. Select the wall material from the menu (stainless steel).

More specifications are not required – the following parameters (lining, sludge level etc.) remain in the default state.

Once a relevant parameter in menus >Measure Place< or >v-Paths< has been changed it is necessary to re-initialise the path arrangements in order to recalculate path lengths and sensor positions.

- Exit menu "Measure Place" menu to adjust the Measurement Path Settings.
 - Go to >Application < menu.
 The following query appears on the display:


Fig. 28-3 Accept modified measurement place parameters

page 62 NF 600 - rev. 03 / 22.10.2019

2. Confirm modified parameters and path rearrangement. The display shows "Initialised!" after confirmation with >Yes<. The transmitter switches to the >Application<menu.

Sensor Selection and Specification of Mounting Angle procedures:

- 1. Select menu >v-Paths<.
- 2. Choose the sensor type used.
- 3. Enter the mounting angle (NIVUS recommend +45 $^{\circ}$ or -45 $^{\circ}$) and confirm.

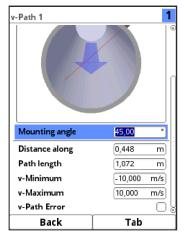


Fig. 28-4 Enter the mounting angle (Clamp-on)

The >Distance along< field on the display indicates the distance between both sensors.

The indicated distance is always the clearance between both sensors.

All other parameters are read-only or remain to be set to default.

- Once entered, all required measurement place Parameters need to be saved:
 - 1. Use "Back" 3 times to exit the menus until >Save Parameters?< is shown on the display.
 - 2. Confirm >YES<.
 - 3. Enter password, the confirmation "Parameter saved!" appears.

 The transmitter switches over to the main screen and uses the new parameters.

Fig. 28-5 Save parameters

28.6.4 Extended Parameter Setting

More specifications:

- Pipe with inner lining
- · Sedimentation within the pipe

For pipes with inner lining:

Procedure:

- 1. Execute steps 1 ("Menu" field, page 61) up to and including 10 ("wall material"; page 62) as described in Sect. "28.6.3 Simple Parameter Setting".
- 2. Select the >Lining< material.

 The thickness of the lining is now included in the graphics area. The transmitter requires this extra value for calculations **including** the lining.
- 3. Indicate the lining thickness in the graphics area.
- 4. If moreover there should be sedimentation within the pipe enter the according value in >Sludge Level< and confirm.</p>
 The transmitter will then subtract this sludge level from the wetted hydraulic total area while calculating the flow rate.
- 5. To save your entries go "Back" and confirm the path modification/arrangement with >Yes<.
- 6. Menu >v-Paths<: choose sensor and specify the mounting angle.

 Here you can read the >Distance along< and the >Path length< values required to install the clamp-on sensors.

page 64 NF 600 - rev. 03 / 22.10.2019

Setting Parameters

29 General Programming

As a principle modified parameters will not become effective before they have been saved. The transmitter will verify whether parameters have been modified while exiting any menu. Subsequently you will be prompted to decide if you wish to save the modified parameters.

- Yes<: the modification will be accepted and saved.
- >No<: the modification will be rejected and the menu is exited.
- >Cancel<: You are exiting the prompt. Parameters remain to be modified but will not become effective and will not be saved, however.

29.1 Save Parameters

If you wish to accept and to save parameters you need to enter a valid password.

Default setting: 2718

The **service key** in this area indicates that the password has been entered within the last six hours and that any further **parameter changes** can be saved **without** having to re-enter the **password**. The six-hour period begins once the password is entered and ends automatically.

This period and thus unintentional parameters changes without password entry can be deliberately aborted. To do this, select the > Service level< under >System< / >Service<. **Do not make an entry** in the following prompt for the password, but confirm the empty, untouched field with the right >Enter< button. The transmitter leaves mode with the parameterization without entering a password.

If a number is displayed next to the service key, the transmitter is in service mode. This is usually the case when a NIVUS service technician has access to the transmitter.

29.2 Change Password

See also Sect. "33.5.2 Change (System) Password".

You can change the default password at any time. However, keep in mind that a modified password will secure any modifications of the transmitter settings. Here, the password length is limited to a maximum of ten characters.

- Procedure to change the password:
 - 1. Open the >System< menu.
 - 2. Select >Service < submenu.
 - 3. Activate the field >Change Password<.
 - 4. Use the number field to enter the current password.
 - Then enter the new password (ten characters max.).The transmitter will accept the new password securing all transmitter settings.

Important Note

Share your password with authorised persons only!

If you should write down your password store it in a safe place.

Should your password get lost contact the NIVUS GmbH.

30 Parameter Functions

30.1 Main Menu

The transmitter parameters can be set using a total of five or eight (for multiple measurement place types) setup menus within the first menu level. Individual menus and their associated submenus are explained in greater detail starting in Sect. "31 Application / MP1 / MP2 / Combi Parameter Menu".

Fig. 30-1 Overview main menu

While setting parameters observe Sect. "25 Operation Basics".

30.2 Overview: Functions Top Menu Level

30.2.1 Application Menu / MP1 / MP2 / Combi

Fig. 30-2 Application menu

This menu is the most extensive and most relevant when it comes to setting the transmitter parameters. The >Application< menu contains four submenus. This is where shape and dimensions of the measurement site are to be set. The flow velocity sensors used as well as information on the mounting position are specified here.

Moreover the required analogue and digital inputs and outputs are defined here:

- Functions
- · Measurement ranges
- Measurement spans
- Limit values

page 66 NF 600 - rev. 03 / 22.10.2019

Within this menu diagnostic options for the items below are available:

- Sensors
- Inputs and outputs
- Complete system
- Signal analysis
- Simulation

The diagnostic options are explained in Sect. "Diagnostics" starting at page 117.

Use this menu to enter or change:

- Constant, fixed sludge levels
- Low flow suppression
- Damping and signal evaluation and signal output
- Stability of signal evaluation and signal output

The parameterization for the combined measurement point differs from that for measurement points 1 and 2. The combined measurement point is a fictitious measurement point whose data is derived from the measurements of the two measurement points 1 and 2.

□> See Sect. "31 Application / MP1 / MP2 / Combi Parameter Menu".

30.2.2 **Data Menu**

Fig. 30-3 Data menu

The >Data< menu allows access to all measurement values in the internal memory.

The functions below are available:

- Graphic representation of measurement values
- List of the 100 previous 24h-day totals
- Communication and transmission options for internal files
- Format external USB stick
- Transmission of parameters set from USB stick and back
- Options to set and erase the internal data memory
- Setting the storage cycle

See Sect. "32 Data Parameter Menu".

30.2.3 System Menu

Fig. 30-4 System menu

The >System< menu contains information on the transmitter:

- Article No.
- Firmware version
- · Serial No.

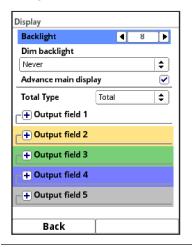
Furthermore the settings/adjustments below are available:

- Set language
- Set units
- Adjust date and time
- · Read active error messages
- Erase error memory
- Display and change password
- Restart (system or measurement)
- Parameter reset

See Sect. "33 System Parameter Menu".

page 68 NF 600 - rev. 03 / 22.10.2019

30.2.4 Communication Menu


Fig. 30-5 Communication menu

This menu comprises the settings for the communication of various communication interfaces with other communication systems. The transmitter itself functions as a server and enables remote administration.

These settings are:

- Input and information about the IP and the domain,
- Details about SSL encryption, HTTP and FTP server,
- Selecting/Deselecting NF Remote and Telnet Protocol,
- · Details on TCP and Modbus RTU,
- Settings for scaling of flow rate, level, velocity, temperature, analog and sum
- and there is a diagnostic option (the data available there are important for the NIVUS service).
- See Sect. "34 Communication Parameter Menu".

30.2.5 Display Menu

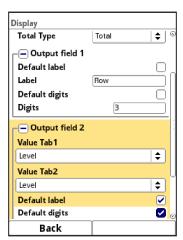


Fig. 30-6 Display menu

This menu permits to adjust the backlight settings as well as to adjust the settings of the five output fields of the main screen.

See Sect. "35 Display Parameter Menu".

30.2.6 Connections Menu

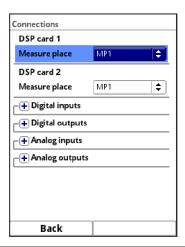


Fig. 30-7 Connections menu

This menu is only available for transmitter types T4 and TM, as it deals with the transmitter configuration comprising multiple measurement points.

The two DSP cards (digital signal processor cards) and the analog and digital inputs and outputs of the respective measurement points are assigned here. Operational parameters can then only be assigned and included in the calculations for the measurement points selected here.

31 Application / MP1 / MP2 / Combi Parameter Menu

31.1 Setting parameters in Measurement place Menu

The >Measurement Place< submenu is one of the most important basic menus when it comes to setting parameters.

The following basic settings are required to set the parameters of the measurement place:

- Activating the measurement point (for types with several measurement points)
- · Name of measurement place
- Transit Time mode
- Arrangement and number of paths
- Measurement medium and medium temperature
- Type and dimensions of channel profile
- Pipe material (incl. lining)
- Possible solid sediments settings (sludge level)
- 3D preview
- Velocity evaluation
- Low-flow suppression
- Measurement damping and stability

page 70 NF 600 - rev. 03 / 22.10.2019

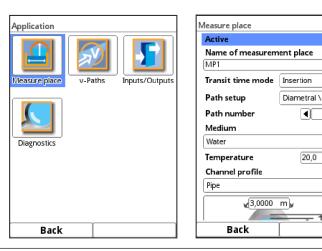


Fig. 31-1 Parameter menu application

31.1.1 Active

This option is only available for transmitter types T4 and TM, as it deals with the transmitter configuration comprising multiple measurement points.

The measurement point is enabled by checking the box. If no check mark is set, the measurement point is disabled, nothing is displayed and it cannot be parameterized.

‡

‡

‡

°C

‡

31.1.2 Name of Measurement Place

Fig. 31-2 Enter the name of the measurement place

This is the place to enter the desired name of the measurement place. The name space is limited to 256 digits.

The default name is deleted automatically as soon as the first character of the new measurement place name is entered.

Procedure:

- 1. Enter the name of the measurement place completely into the text field using the keypad.
- Confirm the name by using the right function key "Input".
 The name of the measurement place is accepted and will be indicated in the main menu.

31.1.3 Transit Time Mode

Use >Transit Time Mode< to specify the measurement method. Select from:

- · Clamp-on (sensors attached from the outside)
- Wet (installed sensors with direct medium contact)

The appearance of the following menus will vary depending on your choice. In such a case both versions are described in the according section of the respective instruction manual.

Path Arrangement in >Clamp-On< Mode

Clamp-on measurements in pipes (circular) are set up diametrical. The most common variants are measurements in diagonal direction ("Diametral \") or as V-Echo ("Diametral V") (Fig. 31-3). The clamp-on measurements are set up chordal in rectangles.

Fig. 31-3 1-Path measurement, path arrangement: "Diametral V"

Select from:

- Diametral \ (circular pipes only)
- Diametral V (circular pipes only)
- Diametral VV (circular pipes only)
- Chordal \ (rectangles only)
- Chordal V (rectangles only)
- Chordal VV (rectangles only)
- Chordal X (rectangles only)
- Chordal XX (rectangles only)
- Chordal XXXX (rectangles only)

Path Arrangement in >Wet< Mode

Measurements with wet sensors can be set up either diametrical or chordal.

Select from:

- Diametral \ (circular pipes only)
- Diametral V (circular pipes only)
- Diametral VV (circular pipes only)
- · Chordal \
- Chordal V
- Chordal VV
- Chordal X
- Chordal XX
- Chordal XXXX

page 72 NF 600 - rev. 03 / 22.10.2019

31.1.4 Number of Paths

A maximum of four paths can be connected directly. The number of paths can be increased up to 32 by connecting up to four extension modules.

Set the number of paths by using "+" and "-". The number is shown in the text field between both symbols.

 \Rightarrow

See also Sect. "31.3 Setting parameters in v-Paths Menu".

31.1.5 **Medium**

Select between "Water" and "User defined". The "Water" option features fixed properties, while "User defined" requires specifying medium properties such as speed of sound and damping and density when setting parameters.

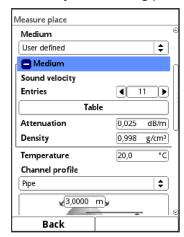


Fig. 31-4 Selecting the measurement medium

Selecting the measurement medium

Choose "User defined" if your medium to be measured is not in the list.

This action opens another menu point where you need to specify e.g. the speed of sound within the medium.

Tip:

Lists providing various speeds of sound can be found on the Internet or from the manufacturer.

31.1.6 Medium Temperature

The medium temperature must initially be entered once and as accurately as possible; it is required for correctly initializing the transmitter.

31.1.7 Channel Profiles

Select between "Pipe" and "Rectangular". "Pipe" is circular, not elliptic.

The selected profile is indicated as a graph in the preview field. The graphical representation, however, does not coincide with the dimensions (in relation) specified. There is no visual control available.

Select profile.

The dimensional values are entered as soon as the profile has been chosen. The unit is set to meter [m] by default. This can be changed in the >System< / >Region Settings< / >Units< / >Level< menu (Fig. 31-5).

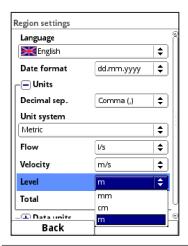


Fig. 31-5 Setting the units

Entering the channel dimensions

For **pipes**, it is sufficient to enter two values to specify the pipe dimensions:

- Pipe circumference or inside diameter or outside diameter
- Wall thickness

Entering inside diameter and wall thickness causes the transmitter to add outside diameter and pipe circumference automatically. The same applies once circumference and wall thickness are entered. The transmitter adds the missing parameters.

For **pipes with inner lining**, it is necessary to additionally specify the thickness of the lining material. The transmitter includes the material thickness with the calculation and uses it to compute the correct inside diameter.

For **rectangular profiles**, width, height and wall thickness are required. If the channel is equipped with a lining the thickness of the lining needs to be specified too.

31.1.8 Wall Material

Different pipe materials feature varying properties regarding the speed of sound.

The most usual pipe materials can be found in the selection menu.

Considering this selection as well as the specified measurement medium the transmitter computes the sound transit time required for the measurement.

Selecting the wall material

If you cannot find the material of the pipe at the measurement place in the list, select "User defined". This action opens up another menu point which prompts you to specify e.g. the speed of sound of the pipe material.

Tip:

When it comes to determine the speed of sound within the pipe material contact NIVUS GmbH.

31.1.9 **Lining**

In practice, cases occasionally arise in which pipelines are equipped with inner linings.

The most common lining materials can be found in the selection menu.

Considering this selection as well as the specified measurement medium the transmitter computes the sound transit time required for the measurement.

page 74 NF 600 - rev. 03 / 22.10.2019

Selecting the lining material

f you cannot find the material of the lining in the list, select "User defined". This action opens up another menu point which prompts you to specify e.g. the speed of sound of the lining material.

Tip:

When it comes to determine the speed of sound within the lining material contact NIVUS GmbH.

31.1.10 Sludge Level

Depending on measurement medium and flow velocity, horizontal pipelines may tend to sedimentation on the pipe bottom.

The >Sludge Level< parameter permits to specify a certain sedimentation level within the pipe. The sedimentation is then considered as "non-moving partial area on the channel bottom with horizontal surface". Prior to computing the flow rate this level height is subtracted from the wetted hydraulic total area.

31.1.11 3D-Preview

Selecting the 3D-preview permits to indicate the configured measurement place including the according sensors.

31.1.12 Flow velocity analysis

The calculation method for determining the flow velocity can be selected here.

The following selections can be made:

- Automatic
- Free

If >Automatic< is selected, hydraulic factors are used to determine the mean velocity $v_{\mbox{\tiny mean}}$ and to calculate the flow rate.

If >Free< is selected, a hydraulic factor can be entered manually under >Application< / >v-Path<.

Contract a specialist company

The hydraulic factor depends on the application and the sensor position.

Such applications require extensive fluid mechanics knowledge and require the use of NIVUS commissioning personnel or an authorized specialist company.

31.1.13 Low-Flow Suppression

This parameter is used to suppress lowest movements or apparent flow rates. The main area of use is the measurement of discharge volumes in permanently filled constructions.

Check >Active< and enter the desired value in >Q suppressed< or >v suppressed<.</p>

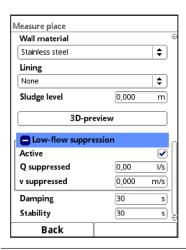


Fig. 31-6 Low-Flow Suppression

The low-flow suppression disregards the detection of very low flow velocity fluctuations.

>Q suppressed<<

Enter the flow rate as a positive value.

Negative values are not possible. The specified value is considered as absolute value and is effective in both positive and negative directions. The measurement system will automatically reset the readings to "0" if the values should be lower than the value specified here.

>v suppressed

This parameter permits to suppress apparent flow rates in applications featuring large profiles and high levels. Very low velocity fluctuations may cause heavy apparent flow rate fluctuations over a long period which cannot be suppressed using the >Q suppressed< function. The measurement system will automatically reset the readings to "0" should the flow velocities be lower than the value specified here. This will also set the calculated volume to "0".

Only positive values can be entered here. The specified value is considered as absolute value and is effective for both positive as well as for negative velocities.

31.1.14 Damping

This menu enables to adjust the display and analog output damping in seconds.

Damping relates to **all** flow velocity values which are available as input. It is not possible to select individual values and to damp single values in different ways.

Taking the specified period, all readings are saved and a floating average is created for each individual average value. This average is used for further calculation of the flow rate.

Input the value in steps of one second.

Default setting: 30 s

31.1.15 Stability

The stability parameter defines the period the transmitter bridges values without having valid measurement events (e.g. in case of invalid flow velocity readings) available.

During this period the transmitter operates using the latest valid reading. If the specified period is exceeded without detecting a correct value the transmitter goes back to reading "0" considering the damping set. The transmitter does not store the values.

Input the value in steps of one second.

Default setting: 30 s

page 76 NF 600 - rev. 03 / 22.10.2019

31.2 Setting parameters in Measurement place Combi Menu

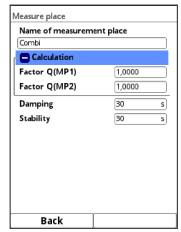


Fig. 31-7 Setting parameters in measurement place Combi menu

The points >Name of Measurement Place<, >Damping< and >Stability< of the fictitious Combi measurement point are identical to those of measurement points 1 and 2.

 \Rightarrow

See Sect. "31.1.2 Name of Measurement Place", "31.1.14 Damping" and "31.1.15 Stability".

In addition, **>Calculation<** can be set. This specifies the ratio in which each of the two measurement points 1 and 2 are to be weighted for calculating the fictitious combined measurement point. The adjustable values range from -100 to +100.

Default setting: 1.0000 at both measurement places

31.3 Setting parameters in v-Paths Menu

The specifications in this menu point refer to the channel as defined in the >Measure Place<menu (see Sect. "31.1.7 Channel Profiles").

Moreover, this menu permits to enter some specifications required to calculate the sensor positions. The transmitter shows the sensor mounting distances after the specifications are completed.

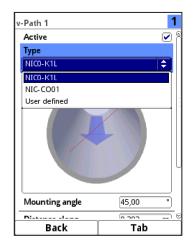
Up to eight flow rate sensors (4 paths) can be directly connected to a NivuFlow 600 transmitter, depending on the type. Up to 64 sensors (32 paths) can be indirectly connected via one or more extension modules (see Sect. "17.1 Device Types")

The >v-Paths< menu provides tabs for the v-paths 1 to x on the top right for setting the parameters (use >Tab<).

The basic structure applies for all menus; the indicated sensors and values, however, may vary depending on the application.

Only a selection of v-paths can be parameterized

For transmitters with several measurement points, this menu works directly with the menu >Connections<. Only those v-paths that were also preselected under >Connections< can be parameterized. The other v-paths are not displayed and cannot be parameterized.


31.3.1 Active

The v-path is enabled by checking the box. If no check mark is set, the v-path is disabled, nothing is displayed and it cannot be parameterized.

31.3.2 Sensor Types in >Clamp-On< Transit Time Mode

The same selection of sensors (Fig. 31-8) is available for all v-paths. Select from >NIC0-K1L<, >NIC-C001< and >User defined<.

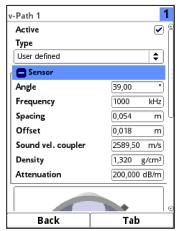


Fig. 31-8 Sensor Selection Menu

- Select Sensor Type:
 - >NIC0-K1L< and >NIC-C001
 The values for the sensors themselves are pre-set and cannot be selected or changed.
 - >User defined<
 The values for >Angle<, >Frequency<, >Spacing<, >Offset< and >Coupling Wedge
 Speed of Sound< must be specified.

Specialist knowledge required

The use of and settings for non-standard sensors require extensive expert knowledge and require the use of NIVUS commissioning personnel or an authorized specialist company.

31.3.3 Sensor Types in >Wet< Transit Time Mode

The same selection of sensors (Fig. 31-9) is available for all v-paths. Select from >NIS-V200R<, >NOS-V2<, >NIS-V280K<, >NIS-V300K<, NOS-V20B<, >NIS-V300B<, NOS-V40< and >User defined<.

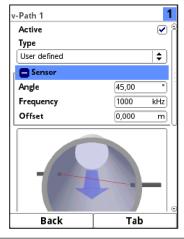


Fig. 31-9 Sensor Selection Menu

page 78 NF 600 - rev. 03 / 22.10.2019

- Select sensor type:
 - >NIS-V200R<, >NOS-V2<, >NIS-V280K<, >NIS-V300K<, >NOS-V20B<, >NOS-V30B< and >NOS-V40

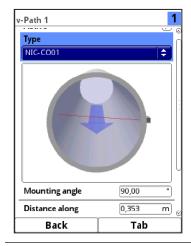
The values for the sensors themselves are pre-set and cannot be selected or changed.

>User defined
 The values for >Angle<, >Frequency<, >Offset< must be specified.

Specialist knowledge required

The use of and settings for non-standard sensors require extensive expert knowledge and require the use of NIVUS commissioning personnel or an authorized specialist company.

31.3.4 Sensor Mounting Position


Hints on the Mounting Angle

In horizontal pipelines do not use pipe bottom or pipe crown as mounting places (risk of soiling, air bubbles).

NIVUS recommends a mounting angle of 45°.

- For >Transit Time Mode< "Clamp-On" and >Path setup< / "Diametral" in >Channel Profile< "Pipe":
 - >Mounting Angle
 Mounting angle for the sensors in the pipe (based on the cross-section)
- For >Transit Time Mode< "Clamp-On" and >Path setup< / "Chordal" in >Channel Profile< "Rectangle":
 - >Mounting Height
 Mounting height for the sensors in the pipe (based on the cross-section)
 - >Mounting Angle
 Mounting angle for the sensors in the pipe (based on the cross-section)

Only one of the two specifications is necessary/possible to position the sensors. The mounting angle is automatically changed by the system if the mounting height is changed by the operator, and vice versa.

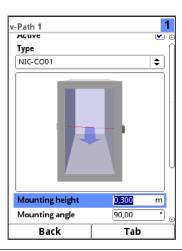
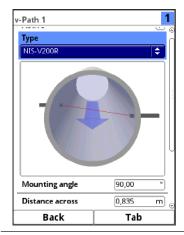
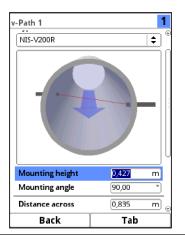


Fig. 31-10 "Clamp-On" sensor mounting in pipe or rectangle




- For >Transit Time Mode< "Insertion" and >Path setup< / "Diametral" in >Channel Profile< "Pipe":
 - >Mounting Angle
 Mounting angle for the sensors in the pipe (based on the cross-section)
- For >Transit Time Mode< "Insertion" and >Path setup< / "Chordal" in >Channel Profile< "Pipe":
 - >Mounting Height
 Mounting height for the sensors in the pipe (based on the cross-section)
 - >Mounting Angle
 Mounting angle for the sensors in the pipe (based on the cross-section)

Only one of the two specifications is necessary/possible to position the sensors. The mounting angle is automatically changed by the system if the mounting height is changed by the operator, and vice versa.

- For >Transit Time Mode< "Insertion" and >Path setup< / "Chordal" in >Channel Profile< "Rectangle":
 - >Mounting Height
 Mounting height for the sensors in the pipe (based on the cross-section)
 - >Direction
 The direction indicates which of the two sensors of the path is installed first or last in the direction of flow (based on the cross-section)

Both entries are required for positioning the sensors.

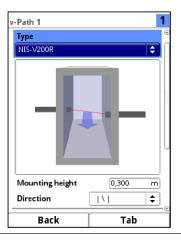


Fig. 31-11 Sensor mounting "Insertion" in pipe or rectangle

The following settings for length and angle in the same path depend on each other. Modifying one changes the others.

>Distance across

Distance from the sensor (centre piezo) to the opposite inner pipe wall; adjustable only with wetted sensors

>Distance along

Distance between sensors (centre piezo) lengthwise along the pipe; on the opposite side of the pipe, as well, depending on the path arrangement

>Path length

Length of the signal path within the medium

>Path angle

Angle between the sensors (within a path)

page 80 NF 600 - rev. 03 / 22.10.2019

31.3.5 Weighting and Hydraulic Factor

Contract a specialist company

The weighting value and the hydraulic factor depend on the application and the sensor position.

Such applications require extensive fluid mechanics knowledge and require the use of NIVUS commissioning personnel or an authorized specialist company.

>Weighting

By modifying the >Weighting< value the involved paths can be weighted and prioritised differently. At least two paths are required to use the function.

>Hydraulic factor

By modifying the >Hydraulic Factor< it is possible to include particular hydraulic conditions prevailing at the measurement place (e.g. to calibrate a measurement place). Only possible with >Flow velocity evaluation

31.3.6 v-Minimum and v-Maximum

The >v-Minimum< and >v-Maximum< settings define the limit values for the velocity measurement. The transmitter ignores occasional higher and lower velocities which hence will not be shown. Permanently measured deviations are indicated as "0". Only the next realistic readings (within the measurement range) will be indicated correctly.

Values within a range of -10 to +10 m/s can be set.

Default setting:

v-Minimum: -10 m/sv-Maximum: 10 m/s

31.3.7 v-Path Error

When the check mark is set, an error message is displayed if signal problems occur within the measurement path, e.g., signal is not sent/received.

31.4 Setting parameters in Inputs and Outputs (analog and digital) Menu

This menu is to define the function of the analog as well as digital inputs and outputs. Other parameters such as measurement and output spans, offsets, limit values, error reactions etc. can be set here as well.

Open the >Inputs/Outputs< menu from >Main Menu< / >Application<.

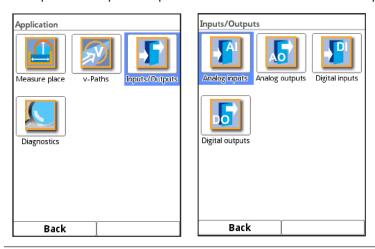


Fig. 31-12 Selection menu Inputs/Outputs

The inputs/outputs menu is subdivided into four parts:

- Analog inputs
- · Analog outputs
- Digital inputs
- · Digital outputs

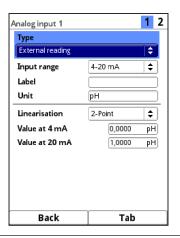
Note

Entry using the letter block see Sect. "25.3 Use/Entry using the letter block".

Operational parameters can only be assigned for a selection of inputs and outputs (analog and digital)

For transmitters with several measurement points, this menu works directly with the menu >Connections<. Only those inputs/outputs that were also preselected under >Connections< can be parameterized. The other inputs/outputs are not displayed and cannot be parameterized.

31.4.1 Analog Inputs


The number of analog inputs depends on the type (see Sect. "17.1 Device Types").

The available analog inputs are shown in the top right corner of the display.

The analog inputs can be selected successively by pressing the right-hand control key >Tab<. The selection is shown as clear text message in the top left corner of the display.

Default setting: Input inactive

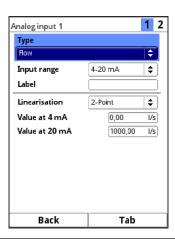


Fig. 31-13 Analog inputs: Activation / Ext. Reading / Flow

Currently the analog inputs can be used for external readings (such as temperature in °C) and for flow measurement. The transmitter hence can be utilised as an extra data logger for readings from other systems. This, however, does not affect the transmitter's functionality as a flow meter.

The values below must be chosen/entered in >External Reading<.

Selection/Input Options:

Input Range: >0-20 mA< or >4-20 mA<

Label: manual input Unit: manual input

Linearisation: >2-Point< or >Table<

For >2-Point< linearisation: manual input of values for 4 or 20 mA

For >Table< linearisation: manual input of the number of >Entries<, then select

>Table<, complete and confirm.

page 82 NF 600 - rev. 03 / 22.10.2019

The values below must be chosen/entered in >Flow<.

Selection/Input Options:

Input Range: >0-20 mA< or >4-20 mA<

Label: manual input

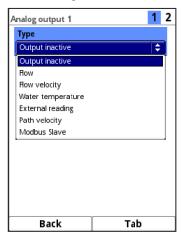
Linearisation: >2-Point< or >Table<

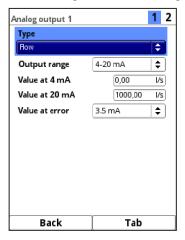
For >2-Point< linearisation: manual input of values for 4 or 20 mA

For >Table< linearisation: manual input of the number of >Entries<, then select

>Table<, complete and confirm.

31.4.2 Analog Outputs


The number of analog outputs depends on the type (see Sect. "17.1 Device Types").


The available analog outputs are shown in the top right corner of the display.

The analog outputs can be selected successively by pressing the right-hand control key >Tab<. The selection is shown as clear text message in the top left corner of the display.

Default setting: Output inactive

The following different functions can be assigned to the analog output.

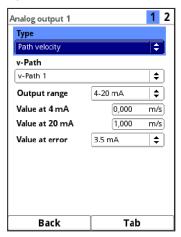


Fig. 31-14 Analog outputs: Activation / Flow / Path velocity

>Flow

The application flow rate (calculated from average flow velocity and wetted cross section) is available on the selected analog output.

Selection/Input Options:

Output range: >0-20 mA< or >4-20 mA<

Value at 0/4 mA: manual input Value at 20 mA: manual input

Value at error: >0 mA< or >Hold value< or >3.5 mA< or >21.0 mA<

>Flow velocity

The calculated average flow velocity used to compute the current flow rate is available on the selected analog output.

Not for measurement place Combi.

Selection/Input Options:

Output range: >0-20 mA< or >4-20 mA<

Value at 0/4 mA: manual input Value at 20 mA: manual input

Value at error: >0 mA< or >Hold value< or >3.5 mA< or >21.0 mA<

>Water temperature

The medium temperature calculated based on the transit times is available on the selected analog output.

Not for measurement place Combi.

Selection/Input Options:

Output range: >0-20 mA< or >4-20 mA<

Value at 0/4 mA: manual input Value at 20 mA: manual input

Value at error: >0 mA< or >Hold value< or >3.5 mA< or >21.0 mA<

>External reading

Possibly linearised measurement values available at the analog input are available here.

Selection/Input Options:

Analog input: >Input 1< or >Input 2< or >Input x<; depending on the number of

inputs available

Output range: >0-20 mA< or >4-20 mA<

Value at 0/4 mA: manual input Value at 20 mA: manual input

Value at error: >0 mA< or >Hold value< or >3.5 mA< or >21.0 mA<

>Path velocity

If more than one flow velocity sensor is used and if the average flow velocity of the individual measurement paths is to be determined it is possible to select the desired flow velocity sensor and to output the according measurement value.

Not for measurement place Combi.

Selection/Input Options:

v-Path: >Path 1< or >Path 2< or >Path 3< or >Path x<, depending on the number

of connected path

Output range: >0-20 mA< or >4-20 mA<

Value at 0/4 mA: manual input Value at 20 mA: manual input

Value at error: >0 mA< or >Hold value< or >3.5 mA< or >21.0 mA<

>Modbus Slave

The analog output is (remotely) controlled via a connected Modbus address of another system. No settings are necessary/possible here.

31.4.3 Digital Inputs

The number of digital inputs depends on the type (see Sect. "17.1 Device Types").

The available digital inputs are shown in the top right corner of the display.

The digital inputs can be selected successively by pressing the right-hand control key >Tab<.

The selection is shown as clear text message in the top left corner of the display.

Default settings: Input inactive

The following different functions can be assigned to the digital input.

page 84 NF 600 - rev. 03 / 22.10.2019

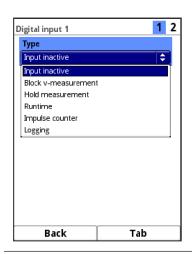


Fig. 31-15 Digital inputs: Activation / Block v-measurement / Impulse counter

>Block v-measurement

The flow measurement can be blocked as long as there is a signal available on the digital input by using an external contact.

Not for measurement place Combi.

Selection/Input Options:

Logic: >not inverted< or >inverted<

Label: manual input

>Block totalizer

For measurement place Combi only.

Setting the check mark disables the addition of the sums of measurements points 1 and 2. This means that only the two individual values for the flow rate are available.

Selection/Input Options:

Logic: >not inverted< or >inverted<

Label: manual input

>Hold measurement

The value is held as long as the input is enabled.

Selection/Input Options:

Logic: >not inverted< or >inverted<

Label: manual input

>Runtime

The system detects and saves the duration of the oncoming signals on the digital input. Such records are used e.g. for the runtimes of pumps or other units.

Selection/Input Options:

Logic: >not inverted< or >inverted<

Label: manual input

>Impulse counter

The system counts and saves the number of oncoming signals on the digital input. The impulses are counted by detecting the status change of the digital input (1->0 or 0->1).

Selection/Input Options:

Edge: >rising< (status change "0" to "1") or >falling<

(status change "1" to "0")

Label: manual input

>Logging

Logging of readings and the according status changes for diagnostic purposes. Evaluation is carried out by detecting the status changes of the digital input (1->0 or 0->1).

Selection/Input Options:

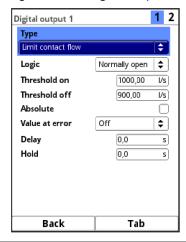
Logic: >not inverted< or >inverted<

Label: manual input

31.4.4 Digital Outputs

The number of digital outputs depends on the type (see Sect. "17.1 Device Types").

The available digital inputs are shown in the top right corner of the display.


The digital inputs can be selected successively by pressing the right-hand control key >Tab<.

The selection is shown as clear text message in the top left corner of the display.

Default setting: Output inactive

The following functions can be assigned to the digital outputs:

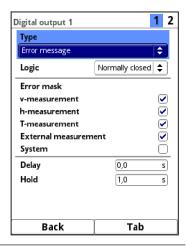


Fig. 31-16 Digital outputs: Activation / Limit contact flow / Error message

>Sum impulses

Output of volume-proportional sum impulses.

Selection/Input Options:

Logic: >Normally open< or >Normally closed<

Negative sum impulses: check box

Quantity: manual input Duration: manual input

>Limit contact flow

If the entered upper flow limit value is exceeded, a digital signal is output. If the value falls below the lower flow limit, this digital signal is reset = hysteresis function to avoid output jitter.

Selection/Input Options:

Logic: >Normally open< or >Normally closed<

Threshold on: manual input Threshold off: manual input

Absolute: check

Value at error: >Off< or >On< or >Hold Value<

Delay: manual input Hold: manual input

page 86 NF 600 - rev. 03 / 22.10.2019

>Limit contact velocity

If the entered upper velocity limit value is exceeded, a digital signal is output. If the value falls below the lower velocity limit, this digital signal is reset = hysteresis function to avoid output jitter. The calculated mean flow velocity is used (also calculated from several paths). Not possible with the combined measurement point.

Selection/Input Options:

Logic: >Normally open< or >Normally closed<

Threshold on: manual input Threshold off: manual input

Absolute: check

Value at error: >Off< or >On< or >Hold Value<

Delay: manual input Hold: manual input

>Limit contact water temp.

If the entered upper water temperature limit value is exceeded, a digital signal is output. If the value falls below the lower water temperature limit value, this digital signal is reset = hysteresis function to avoid output jitter.

Selection/Input Options:

Logic: >Normally open< or >Normally closed<

Threshold on: manual input Threshold off: manual input

Absolute: check

Value at error: >Off< or >On< or >Hold Value<

Delay: manual input Hold: manual input

>Limit contact external read.

If the entered upper external measured value limit is exceeded, a digital signal is output. If the value falls below the lower external measured value limit, this digital signal is reset = hysteresis function to avoid output jitter.

Selection/Input Options:

Logic: >Normally open< or >Normally closed<

Analog input: >Input 1< or >Input 2< or >Input x<; depending on the number of inputs available

Threshold on: manual input
Threshold off: manual input

Absolute: check

Value at error: >Off< or >On< or >Hold Value<

Delay: manual input Hold: manual input

>Error message

By activating individual selection fields (check box) it is possible to assign individual error types to the digital output. Moreover the output logic can be switched between normally open and normally closed.

Selection/Input Options:

Logic: >Normally open< or >Normally closed<

Error mask:

v-measurement: check h-measurement: check T-measurement: check External measurement: check

System: check
Delay: manual input

Hold: manual input

>Modbus Slave

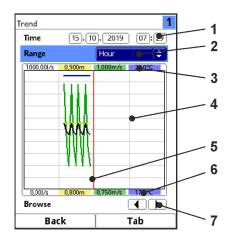
The digital output can be used via the Modbus for the controlled output of signals from other systems.

Selection/Input Options:Logic: >Normally open< or >Normally closed

31.5 Setting Parameters in Diagnostics Menu

The Diagnostics menu is described separately in greater detail in Sect. "Diagnostics" starting at page 117 of the instruction manual.

32 Data Parameter Menu


Fig. 32-1 Data menu

The data menu contains all internally saved readings and is subdivided in six submenus.

32.1 Trend

The Trend graph is a representational recorder function. Choosing the trend graph provides access to current and previously saved (historic) measurement data.

The individual measurement points are shown at the top right of the display. The Tab key can be used to scroll between the measurement points.

- Date/Time selection
- 2 Indication period
- 3 Scaling max. range
- 4 Display with grid lines
 - Date/Time line

5

- 6 Zero point scaling
- 7 Browse (next/back)

Fig. 32-2 Trend Graph Details

- Procedure to view current measurement data:
 - Select the desired range (indication period).
 The selected range is shown. Measurement data are not automatically updated

page 88 NF 600 - rev. 03 / 22.10.2019

- while represented (the current readings can be found in the lower third of the main screen).
- 2. Use the arrows (Fig. 32-2 no. 7) to browse next or back if required leaving the basic display settings unaltered.
- 3. In order to get back to the main screen press the left function (Back) three times.

The **Date/Time Selection** (Fig. 32-2 no. 1) can be found in the top area of the main screen. The line is highlighted blue and hence active.

- Proceed as follows to select a specific point in time (historical measurement data):
 - 1. Turning the rotary pushbutton engages the first field (day).
 - 2. Specify the desired day.
 - 3. Turning the rotary pushbutton again takes you to the next field (month).
 - 4. Repeat your entry until the desired time (day, month, year, hour, minute) is completely specified.
 - Confirm your entry with the right function key. Date and time will be accepted.
 The readings are shown in the display depending on the date and the period selected (Fig. 32-2 no. 2).
 The vertical red line (Fig. 32-2 no. 5) marks the selected point of time (date and time).
- Interrupt your entry by pressing the left function key (back).

Representation:

The selected period covers the area between the left and the right display margin.

The **period** within which data are to be represented can be modified.

- Modify the setting using the >Range< section (see Fig. 32-2 no. 2).
 - 1. Turn the rotary pushbutton until >Range< is highlighted blue.
 - 2. Press the rotary pushbutton the selectable periods are shown.

Available are:

- (1) hour
- 4 hours
- (1) day
- (1) week
- 4 weeks
- 3. Turn the rotary pushbutton until the desired section is highlighted blue.
- 4. Confirm your entry with the right function key. The desired period will be accepted.

Representation:

- The vertical red line marks the selected point of time (date and time).
- The representation grid is internally fixed.
- The selected period >Hour< always begins left with minute "0" and ends right with minute "59".
- For increased readability the screen is divided by three vertical help lines. Each division represents a period of 15 minutes.

Underneath the display you can find the function >Browse<.

Use the arrow symbols to browse one hour forwards or backwards each time you press the button.

If **period >4 hours<** is chosen the start of the representation depends on the selected point of time.

Depending on the start time the representation begins:

- 00:00 h
- 04:00 h
- 08:00 h
- 12:00 h
- 16:00 h
- 20:00 h

Representation:

- The range of representation ends exactly 4 hours later on the right side.
- This representation is divided by three vertical help lines too. The distance between the lines is one hour.

Use the >Browse< function to move backwards and forwards within this screen in steps of 4 hours.

If **period >Day<** is chosen the representation begins always on the left at hour 00:00 and ends on the right at hour 24:00.

Representation:

• For increased readability the screen is divided by five vertical help lines. Each division represents a period of 4 hours.

Use the arrow symbols to browse one day forwards or backwards each time you press the button.

If **period >Week<** is chosen the representation begins always on the left at "Monday 00:00 h" and ends on the right at "Sunday 24:00 h".

Representation:

• For increased readability the screen is divided by six vertical help lines. Each division represents one weekday.

Use the arrow symbols to browse one week forwards or backwards each time you press the button.

If **period >4 Weeks<** is chosen the representation begins always on the left at "Monday 00:00 h" and ends on the right at "Sunday 24:00 h".

Representation:

- The reference point in time of the 4-weeks representation is the 29.12.1969, 00:00 h.
- For increased readability the screen is divided by three vertical help lines. Each division represents a period of 7 days.

Use the arrow symbols to browse four weeks forwards or backwards each time you press the button.

Note

Once the period >4 Weeks< is selected it may take a few seconds to load the data completely.

page 90 NF 600 - rev. 03 / 22.10.2019

32.2 Total

The totals, divided into positive and negative totals, for the respective measurement points are displayed. In addition, the resettable totals are displayed and they can also be reset using the >Reset total< button.

 m^3

m³

m³

m³

m³

The individual measurement points are shown at the top right of the display. You can scroll between the measurement points with the Tab key.

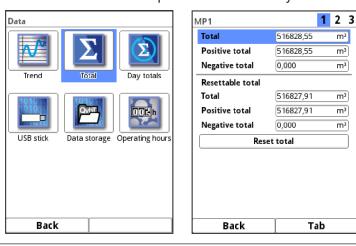


Fig. 32-3 Positive and negative totals

32.3 **Day Totals**

This is where the flow totals can be viewed in a table. Each value represents a period of 24 hours.

The individual measurement points are shown at the top right of the display. You can scroll between the measurement points with the Tab key.

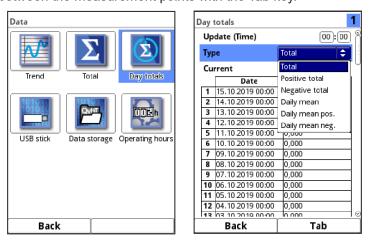


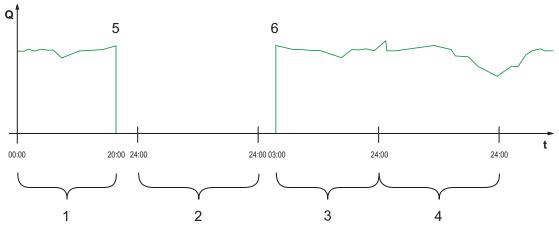
Fig. 32-4 **Selection Day Totals**

The sum type to be displayed can be selected under >Type<: >Total<, >Positive total<, >Negative total<, >Daily mean<, >Daily mean pos.< and >Daily mean neg.<.

A maximum of 100 totals (= 100 days) is stored. Starting with value 101 the oldest value will always be overwritten (ring memory).

Turn the rotary pushbutton to the right to scroll down the table and to the left to scroll up

It is possible to view older day totals as well. A prerequisite to view older values is that the unit has run for a longer period.


Example: 98 values - the unit is running for 98 days

In general, only totals created during days with the transmitter actually powered up can be viewed.

If the transmitter should be shut down between two totalising events (< 24 hours) a total will be calculated by using **measured** values. Such a total is **not equal to the real daily flow rate** but corresponds to the rate measured by the transmitter while powered up.

Should the transmitter be shut down before the next totalising event and remains shut down until the moment of the following totalising event (> 24 hours) no total will be created for this period (see Fig. 32-5). The according date is specified in the list using the value "0". This "gap" can be identified from the completely missing entry (date/values) within the listed sequence. No empty lines will be created.

- 1 Total day 1: total covering 20 hours
- 2 Day 2: Power failure no totalising
- 3 Total Day 3: Total covering 21 hours
- 4 Total Day 4: Total covering 24 hours
- 5 Power failure
- 6 Power available again

Fig. 32-5 Totalising scheme

- The totalising period is set to the period between 00:00 o'clock and 24:00 o'clock as **per default**. This means that the day totals are always created between 00:00 o'clock and 24:00 o'clock.
- The totals are created at 00:00 o'clock as **per default**.
- The time of totalising can be modified as follows:
 - 1. Turn the rotary pushbutton until >Update (Time)< is highlighted blue.
 - 2. Turn the rotary pushbutton to activate the hours section.
 - 3. Specify the desired time to start totalising (e.g. 08:00) and continue turning the button to the minutes section.
 - 4. Specify the desired minutes.
 - 5. Confirm your specifications by pressing the right function key >Enter<. The time of totalising has now been changed to 08:00 o'clock. Due to these settings the 24-h-total will be automatically created covering the period between 08:00 o'clock and 08:00 o'clock of the following day.</p>

The >Current< field indicates the subtotal accrued since the latest totalising event.

page 92 NF 600 - rev. 03 / 22.10.2019

32.4 USB stick

Requirements to USB sticks:

- USB 2.0 supported
- FAT 32 format (or FAT 12 or FAT 16)
- Maximum permissible memory 32 GB

Working with USB stick:

Plug the USB stick into the USB slot located above the display.

Functions:

- Transmission of measurement data to USB stick
- Instrument parameters can be saved to USB stick
- Saved parameters can be restored from USB stick back to the instrument
- · Formatting the USB stick

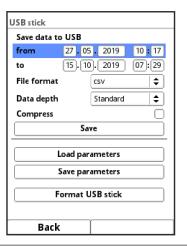
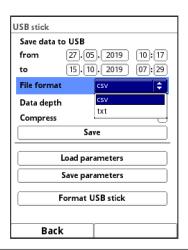
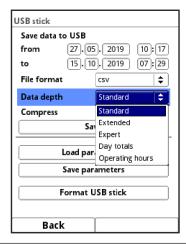


Fig. 32-6 Selection submenu


The transmitter is equipped with an internal data memory. Portions of your measurement data or the complete memory contents can be transmitted to USB stick.


Within this section it is possible to specify the desired period of transmission.

Per default the transmitter is set to transmit the data between the latest transmission and the current point in time. You are free to adjust this period as desired, however.

- To transmit data to USB stick proceed as follows:
 - 1. Press the rotary pushbutton to engage the top field.
 - 2. Turn the rotary pushbutton to specify the desired start day.
 - 3. Turn the rotary pushbutton again to get to the month input.
 - 4. Repeat the procedure until the desired date and time have been specified completely.
 - 5. Confirm your entries by pressing the right function key >Enter<.
 - 6. Turn the rotary pushbutton to highlight the >to< field blue.
 - 7. Turn the rotary pushbutton to set the desired stop day.
 - Specify the desired stop time as described before.Now the period of data to be transmitted to USB stick is specified.

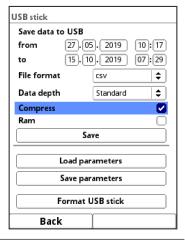


Fig. 32-7 Transmission period / data depth / compression

9. To choose the desired data format turn the rotary pushbutton which opens a selection menu.

The formats txt and csv are available.

10. Press the rotary pushbutton to accept the data format.

The selectable data depth comprises five possible levels:

Standard

This is the appropriate format for most applications and hence is the default setting. The saved data sets contain the following information:

- Date and time
- Totaliser
- Calculated flow rate
- Average flow velocity
- Water temperature
- Current values as well as the accordingly calculated values of enabled analog and digital inputs

Extended

This option is appropriate for the verification of critical, important applications and is required mainly for servicing personnel.

The saved data sets contain the following information:

- All data sets from the previous data depth >Standard
- Average flow velocities of the v-Paths

Expert

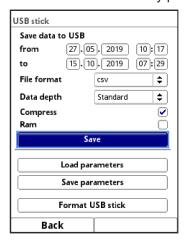
This option is appropriate for the verification of critical, important applications and is required mainly for servicing personnel.

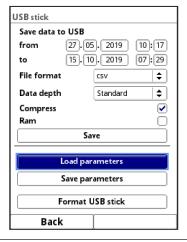
The saved data sets contain the following information:

- All data sets from the previous data depth >Extended
- Noise
- Amplification

Day Totals

This option saves only the day totals, no individual values.


page 94 NF 600 - rev. 03 / 22.10.2019


Operating hours

This option saves only the operating hour totals, no individual values.

The **>Compress<** function makes sense only when large data sets are to be transmitted. In such cases the selected files are zipped as ".zip" files. If the check mark is set, you can also select **>Ram<** and the data will be written to RAM instead of to a USB stick.

- After a transmission period, data format and data depth have been defined the data can be saved on a USB stick.
 - 1. Activate the **>Save<** button.
 - 2. Press the rotary pushbutton to save the data to a USB stick.

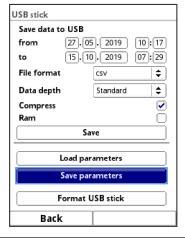


Fig. 32-8 Save/load parameters

The function **>Load Parameters<** permits to load data files previously saved to USB stick back to the transmitter.

By using the function **>Save Parameters<** you can save all parameters of the measurement place to USB stick. During this procedure a total of two files will be created and saved.

Formats of the created files:

XXXX_DOC_AABBCCDDEE.pdf

This file is for documentation purposes and contains basic settings as well as modified parameter settings.

XXXX_PAR_AABBCCDDEE.xml

Minute

This file contains the complete parameter set for the transmitter and is used to save the parameter settings.

Explanation of file names:

ΕE

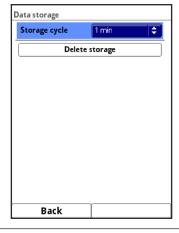
XXXX = Name of measurement place as set

AA = Year

BB = Month

CC = Day


DD = Hour



- You can convert unformatted or incorrectly formatted USB sticks into the correct format directly on the instrument:
 - 1. Turn the rotary pushbutton until >Format USB-Stick< is highlighted blue.
 - Press the rotary pushbutton to format the plugged USB stick.
 SUCCESSFUL< will appear in the display as soon as the stick has been formatted.

32.5 Data storage

This submenu can be used to modify the storage cycle and to erase the internal data memory.



Fig. 32-9 Data storage

Setting options for the storage cycle:

• 30 s, 1 min, 2 min, 5 min, 10 min, 15 min

Default setting for the storage cycle: 1 min

The mean value covering the entire cycle is **always** saved instead of the instantaneous value at the moment of storage.

Using the button **>Delete storage<** you can erase the complete internal data memory. The memory is password protected to avoid unintentional deletion.

Important Note

Erased data cannot be restored!

Procedure:

- 1. Enter the required password to erase data.
- 2. Confirm the password with the right function key >Enter<.

page 96 NF 600 - rev. 03 / 22.10.2019

32.6 Operating hours

The values of the total operating hours as well as the individual day totals can be viewed in the table here. Each value in the table covers 24 hours.

Fig. 32-10 Selecting Operating Hours

A maximum of 100 totals (= 100 days) is stored. Starting with value 101 the oldest value will always be overwritten (ring memory).

Turn the rotary pushbutton to the right to scroll down the table and to the left to scroll up again.

It is possible to view older day totals as well. A prerequisite to view older values is that the unit has run for a longer period.

Example: 98 values – the unit is running for 98 days

In general, only the values at which the transmitter was actually in operation can be read off.

The >Total operating hours< and >Current< values can be selected and specified using the keypad (e.g. if the transmitter had to be replaced).

33 System Parameter Menu

33.1 Information

Fig. 33-1 System submenu/system information

>Information< is a read-only menu and provides the instrument information below:

- Serial no. and article no.
- MAC address
- Firmware version of the transmitter

Furthermore, you can find here the following information on the activated sensors:

- · Article numbers
- · Current firmware versions
- Serial numbers

33.2 Region settings

The following settings can be adjusted in this menu:

- (Operation) Language
- Date format
- Units of measurement values
 Here it is possible to distinguish between indicated and saved measurement values.

Fig. 33-2 Language settings / language / date format

33.2.1 (Operation) Language

The languages below are currently available:

• English, German, French, Italian, Spanish, Portuguese, Swedish, Danish, Finnish, Polish, Hungarian, Romanian, Czech and Russian

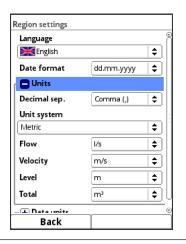
33.2.2 Date Format

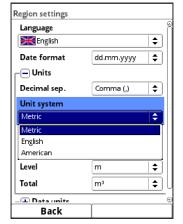
The following date formats can be set:

- DD.MM.YYYY (Day/Month/Year)
- MM/DD/YYYY (Month/Day/Year)

33.2.3 Units

Procedure:


- 1. Turn the rotary pushbutton until the >Units< field is highlighted blue.
- 2. Press the rotary pushbutton to turn the PLUS on the left to MINUS and to open the selection list at the same time.
- 3. Turn the rotary pushbutton to the desired option.


Decimal Separators

- Comma
- Full stop

The decimal separators specified here are used only for indication in the transmitter display.

page 98 NF 600 - rev. 03 / 22.10.2019

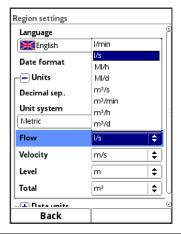


Fig. 33-3 Units system

Units system

Available units:

- Metric
- English
- American

The adjustable units depend on the selected units system:

- In metric system e.g. liter, cubic metre, cm/s etc.
- In English system e.g. ft, in, gal/s etc.
- In American system e.g. fps, mgd etc.

Units for display representation

- Flow
- · Flow velocity
- Level
- Total
- Temperature

33.2.4 Data Units

When adjusting the >Data units< proceed right as described under >Units<.</p>

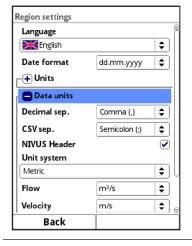


Fig. 33-4 Data units

In the **>Data units<** section the detected measurement values are **converted and saved** according to the selected unit.

Decimal Separators

- Comma
- Point

Specifying the decimal and csv separators is vital for correctly reading the data. When evaluating measurement data using other than German software applications (e.g. English Excel) be sure the decimal and csv separators are selected correctly.

CSV Separators

- Comma
- Semicolon

NIVUS Header

When the check mark is set, a NIVUS logo is displayed/printed on the output table. Without a check mark there is no NIVUS logo and the table appears neutral.

Units for storage

- In metric system e.g. l/s, m³/s, m³/d, cm/s etc.
- In English system e.g. ft³/s, in, gal/min, Mgal/d, in/s, yd/s etc.
- In American system e.g. gps, gpm, cfs, cfm, cfh, cfd, mgd etc.

Units for storing measurement data

- Flow
- Flow velocity
- Level
- Total
- Temperature

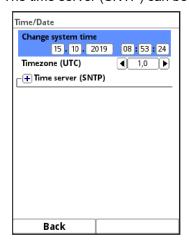
page 100 NF 600 - rev. 03 / 22.10.2019

33.3 Time/Date

This submenu is used to change the system time of the transmitter and the current date.

This function is required to select summer or winter time, after power failure or if the internal buffer battery should fail. If the transmitter is operated for a long period the internal clock may deviate. The deviations can be corrected here.

Note


Changing the system time will affect data storage. With the data storage enabled double data sets or data gaps may occur after the system time has been changed.

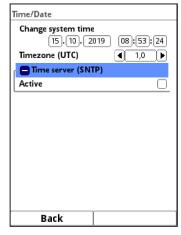


Fig. 33-5 Selecting Time/Date

The current system time as well as the time zone (UTC or GMT) relative to the zero meridian can be adjusted here.

The time server (SNTP) can be activated here, as well.

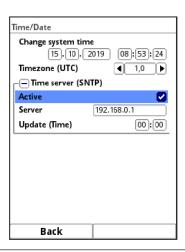


Fig. 33-6 Settings

33.4 Error messages

Use this menu to recall the currently active queued error messages and to erase the error message memory.

The memory is password protected to avoid unintentional deletion.

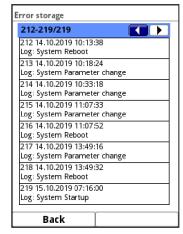


Fig. 33-7 Error messages

See also Sect. "Error Messages" starting at page 130.

33.5 Service

This submenu contains the following functions:

- · Service level
- · Change password
- Reboot (system)
- Restart measurement
- Parameter reset
- Update NivuFlow (service level with password)

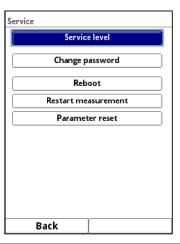


Fig. 33-8 Service

page 102 NF 600 - rev. 03 / 22.10.2019

33.5.1 Service Level

Additional functions and settings are stored at various points under the **service level**, which can be activated with the transmitter password.

Further service levels are reserved for the NIVUS customer service as well as authorised expert companies and hence are protected by **special service passwords**.

System-relevant modifications and special settings for particular applications can be adjusted here.

Such modifications shall be executed by the NIVUS commissioning personnel exclusively!

33.5.2 Change (System) Password

Default password: "2718"

NIVUS recommend that this password is changed in order to protect the system from unauthorised access. You are free to select any password with a maximum length of ten digits.

For your own safety we recommend you share your password only with **authorised individuals**.

A password changed by you cannot be recovered by NIVUS!

If the password is lost, the entire system must be reset; set parameters will be lost and must be re-assigned.

Write down your password and store it in a safe place.

 \Rightarrow

See also Sect. "29.2 Change Password".

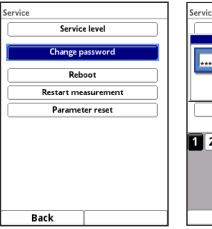


Fig. 33-9 Changing the (system) password

33.5.3 Reboot

A transmitter reboot will interrupt the current measurement process.

The system will reboot using the parameters set and saved last. After booting, the system behaves as when the instrument is switched on (like a PC).

This menu point replaces the system shutdown and reboot.

All parameters, counters and saved data are retained.

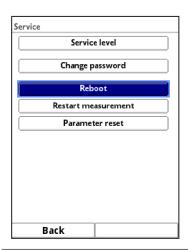


Fig. 33-10 Reboot

33.5.4 Restart Measurement

This option interrupts the currently running measurement process and starts a new measurement.

33.5.5 Parameter reset

The parameter reset will reset any parameters to default settings. Counters, changed password and saved measurement data are retained.

The actual parameter reset is not executed before you exit the parameter settings menu (back to main menu) and the storage is confirmed. The process can be aborted up to this action.

Fig. 33-11 Resetting the parameters to default settings

33.5.6 Update NivuFlow

Upload a NivuFlow firmware stored on USB.

Only in consultation with the companies of the NIVUS Group.

page 104 NF 600 - rev. 03 / 22.10.2019

34 Communication Parameter Menu

This menu is used to set up communication to other devices.

Furthermore the network integration can be set up here as well. The details will not be explained here.

If you should not have the required IT skills we recommend you leave such tasks to **IT specialists** or the **NIVUS commissioning personnel**.

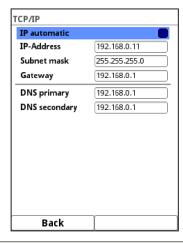


Fig. 34-1 Communication

TCP/IP

Settings for data transport within a decentralised network. Here the settings for the IP address and the domain are adjusted or only displayed (for >IP automatic< and/or >DNS automatic<).

Web server

Settings for SSL, HTTP and FTP and activation of NF Remote and Telnet. The respective access data (SSL, HTTP and FTP), among other things, are managed here.

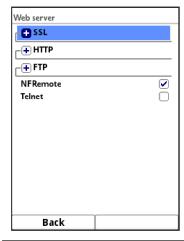
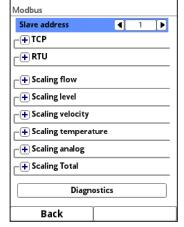


Fig. 34-2 Web server


Modbus

It is possible to integrate the transmitter into other systems via Modbus.

The Modbus protocols are available upon request if required. Contact the NIVUS GmbH headquarters in Eppingen.

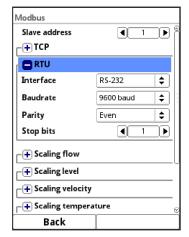


Fig. 34-3 Modbus

The functions below are available here:

- Slave address (1 to 247)
- TCP
- RTU
 - Interface (RS232 or RS485)
 - Baudrate (1200, 2400, 4800, 9600, 19200, 38400, 57600 or 115200 baud)
 - Parity (None, Odd or Even)
 - Stop bits (1 or 2)

The following scaling can be set, as well:

- · Scaling flow
- Scaling level
- Scaling velocity
- · Scaling temperature
- Scaling analog
- Scaling total

The range resolution is defined by entering the values for 0 / 65.535 digits (or -32.768 / 32.768 when the check mark for "Signed" is set).

A value must be entered (default setting: "0") for "Error value (digits)" in order to output an error message if an error occurs.

The scaling per digit is defined with "Scaling Total".

Specialist knowledge required

These settings require extensive expert knowledge and require the use of NIVUS commissioning personnel or an authorized specialist company.

page 106 NF 600 - rev. 03 / 22.10.2019

‡

<u>✓</u>

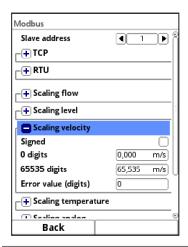


Fig. 34-4 Programming measurement value scaling

35 Display Parameter Menu

The following settings can be adjusted in the display menu:

- Backlight
- Designation of the five main screen fields
- · Decimal places of individual value representations

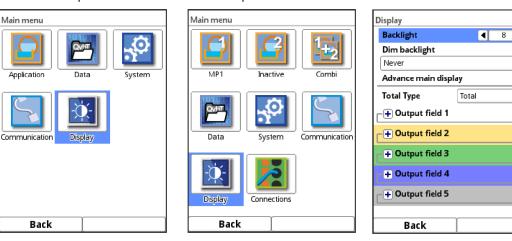


Fig. 35-1 Display / backlight / delay time

(Dim) backlight

The backlight can be adjusted in ten levels.

Adjust the backlight to the ambient conditions. Avoid setting the display too bright.

In order to extend the display life NIVUS recommend to enable the automatic display dimming option here (dim light). The display will dim automatically if it has not been used for a certain time. This period can be determined by using the delay time option (never, 30 s, 1 min, 2 min and 5 min).

As soon as settings are made on the transmitter (e.g. pressing a key) the display will go back to standard brightness.

Default setting: brightness level "8" and delay time "Never".

Advance main display (for multiple measurement place types only)

If the check mark is set, the main display automatically switches back and forth between the activated measurement points. Each measurement point and its current values are displayed for approx. 5 s without any further settings.

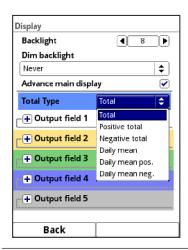


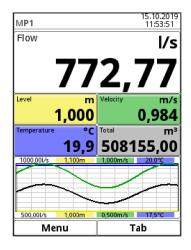
Fig. 35-2 Total Type

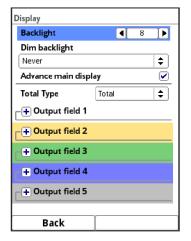
Total Type

The totals types to be displayed are defined here. The following options are available: >Total<, >Positive total<, >Daily mean<, >Daily mean pos.< and >Daily mean neg.<.

Output fields

The five main screen output fields (>Flow<, >Level<, >Velocity<, >Temperature< and >Total< and/or flow for >Measurement place 1< and >Measurement place 2< and >Total< for measurement place Combi) can be defined by the user in terms of names and decimal places.




Note

The values assigned to fields cannot be changed.

Example: the "Flow" field will **always** issue the flow value even if it has been renamed to "Temperature".

The underlying colours of the output fields correspond to the colours of the values in the main display.

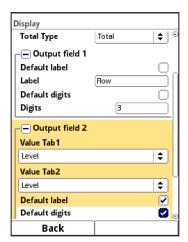


Fig. 35-3 Output fields, colours and settings

Renaming procedure:

- 1. Unfold the output field.
- 2. Untick >Standard Name<.
- 3. Enter a new name. Any name can be entered. The length of the name is limited to 16 characters.

The name entered **does not** change the values on the main screen.

page 108 NF 600 - rev. 03 / 22.10.2019

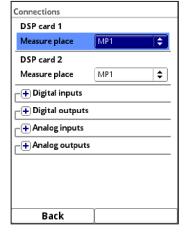
The same procedure can be used to specify the desired number of **decimal digits**. Here a maximum of five decimal digits is possible.

Note

During setting the decimal digits observe the measurement accuracies of the sensors and the measurement units set.

The temperature sensor e.g. has a maximum resolution of 0.1 K.

The display fields 2, 4 and 5 offer setting options for two values each. The following applies >Value Tab 1< for measurement loop 1 and >Value Tab 2< for measurement loop 2.


The selection options are:

- Output field 2: >Level<, >Analog input 1<, >Analog input 2< and >Not active
- Output field 4: >Water temperature<, >Air temperature<, >Analog input 1<, >Analog input 2< and >Not active
- Output field 5: >Total<, >Analog input 1<, >Analog input 2< and >Not active

36 Connections Parameter Menu

This submenu exists for multiple measurement place transmitter types (T4 and TM) only. The assignment of the terminal strips for the analog inputs/outputs and the digital inputs/outputs to the measurement points is defined in this menu. This assignment is used to display the calculated values (e.g. in the main display and in the parameter menus of the measurement points) and, if necessary, for the subsequent calculation with the values. The inputs/outputs first need to be assigned in the Connections menu so that they can be displayed and parameterized in the measurement loop menu.

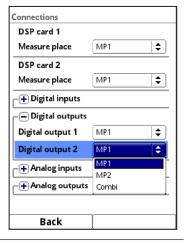


Fig. 36-1 Connections menu

Main Display

These two functions are available in the main display:

- Display values
- · Direct access to the most important adjustment parameters

37 General overview

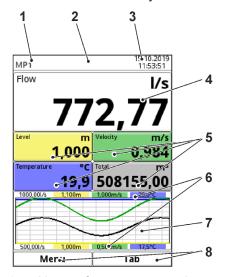
The following information can be found in the top display line:

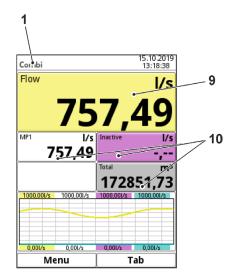
- · Name of measurement place
- Date (or 1, 2, 3; see Fig. 37-2)
- Time (or 1, 2, 3; see Fig. 37-2)

The **red full circle with white cross** in the top display line indicates current malfunctions of system or individual sensors.

The **service key** here indicates that the password has been entered within the last six hours and that any further **parameter changes** can be saved without having to re-enter the **password**. The six-hour period begins once the password is entered and ends automatically.

If a number is displayed next to the service key, the transmitter is in service mode. This is usually the case when a NIVUS service technician has access to the transmitter.




See also Sect. "29.1 Save Parameters".

When in operation mode, the transmitter indicates the following important readings in the **main display sector** (default settings):

- Flow quantity
- Level
- Velocity (calculated average flow velocity)
- Medium temperature
- Total

The **bottom line** of the display shows a trend graph (hydrograph) as well as the current functions of both function keys.

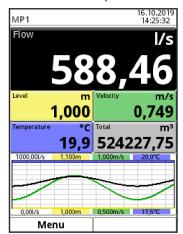
- 1 Name of measurement place
- 2 Error message (if pending), information or display for active service mode

page 110 NF 600 - rev. 03 / 22.10.2019

- 3 Date/Time
- 4 Display range 1 (Output field 1 for flow rate)
- 5 Display range 2 (Output field 2...5 for level, average flow velocity, medium temperature and total)
- 6 Automatic scaling for display range 3
- 7 Display range 3 (trend graph on level, velocity, medium temperature and amount)
- 8 Operating display for the assignment of the function keys
- 9 Display range 4 (Output field 6 for flow rate of combined measurement place Combi)
- Display range 5 (Output field 7...9 for the flow rates for measurement point 1 and measurement point 2 and for the sum from the combined measurement points)

Fig. 37-1 Main screen overview

The **main display** for types T4 and TM (with several measurement points) **switches** back and forth between the active measurement points, provided that switching is activated under >Advance main display< (see Sect. "35 Display Parameter Menu"). Clicking on the display fields stops the display switching.


You can scroll between the individual measurement points manually using the Tab key.

The menu allows direct access to the most relevant settings and information:

- Rotate the rotary pushbutton until the desired section is highlighted in black.
- Press the rotary pushbutton the relevant section will open a dialogue window.

As soon as the display fields are selected (shown in black), the numbers 1...3 are displayed in the upper right-hand corner instead of date and time for the types T4 and TM:

- 1 measurement place 1
- 2 measurement place 2
- 3 measurement place Combi

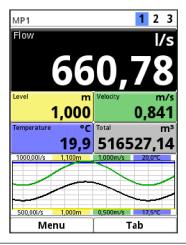


Fig. 37-2 Flow volume section selected (figure on the right side: types T4/TM)

Note

After having modified the system-specific parameters, you need to confirm that the modifications are saved to activate the modified parameters.

37.1 Display Flow in measurement places 1 and 2

Once the dialog window has been activated by pressing the rotary pushbutton you can use the pop-up menu to access the individual menus (Information, Diagnostics, Settings, Display and Error messages) (see Sect. "33.1 Information", "Diagnostics", "31.1 Setting parameters in Measurement place Menu", "35 Display Parameter Menu" and "33.4 Error messages").

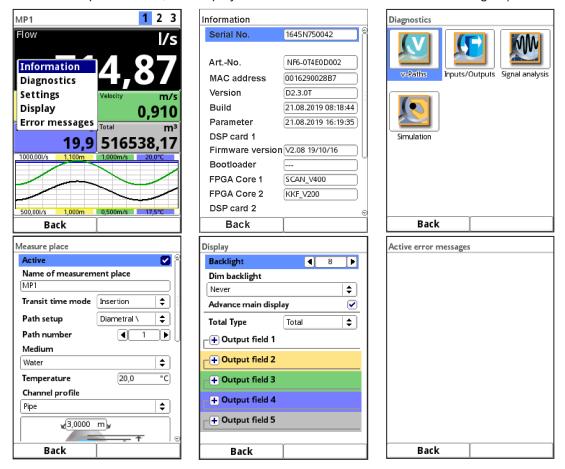


Fig. 37-3 Flow: Pop-up menu and pages

37.2 Display Level in measurement places 1 and 2

Once the dialog window has been activated by pressing the rotary pushbutton you can use the pop-up menu to access the menu Display (see Sect. "35 Display Parameter Menu").

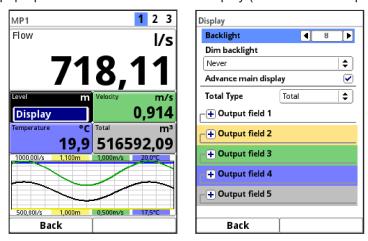


Fig. 37-4 Level: Pop-up menu and page

page 112 NF 600 - rev. 03 / 22.10.2019

37.3 Display Velocity in measurement places 1 and 2

Once the dialog window has been activated by pressing the rotary pushbutton you can use the pop-up menu to access the individual menus (Diagnostics, Settings and Display) (see Sect. "39 Diagnostics v-Paths", "31.3 Setting parameters in v-Paths Menu" and "35 Display Parameter Menu").

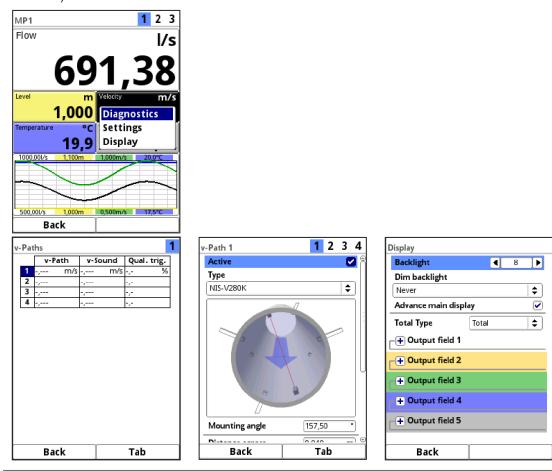
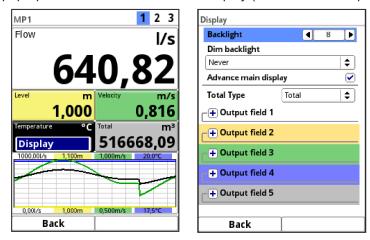
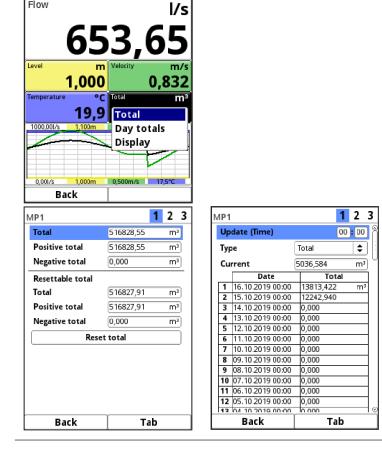


Fig. 37-5 Velocity: Pop-up menu and pages

37.4 Display Temperature in measurement places 1 and 2

Once the dialog window has been activated by pressing the rotary pushbutton you can use the pop-up menu to access the menu Display (see Sect. "35 Display Parameter Menu").




Fig. 37-6 Temperature: Pop-up menu and page

MP1 Flow

37.5 Display Sum in measurement places 1 and 2

Once the dialog window has been activated by pressing the rotary pushbutton you can use the pop-up menu to access the individual menus (Total, Day Totals and Display) (see Sect. "32.2 Total", "32.3 Day Totals" and "35 Display Parameter Menu").

Backlight
Dim backlight
Never

Advance main display

Total Type
Total

+ Output field 1

+ Output field 3

+ Output field 4

Back

Display

Fig. 37-7 Total: Pop-up menu and pages

37.6 Display Trend/Hydrograph in measurement places 1 and 2

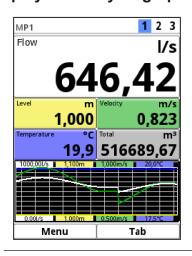


Fig. 37-8 Trend/Hydrograph: Pop-up menu and page

If more comprehensive and in-depth graphs should be required, the graph section can be selected directly.

Here you can specify display period as well as the display range.

Browse next or back within the selected period using the >Browse< arrow keys (located below the display).

page 114 NF 600 - rev. 03 / 22.10.2019

37.7 Display Flow in measurement place Combi

Once the dialog window has been activated by pressing the rotary pushbutton you can use the pop-up menu to access the individual menus (Information, Diagnostics, Settings, Display and Error messages) (see Sect. "33.1 Information", "Diagnostics", "31.1 Setting parameters in Measurement place Menu", "35 Display Parameter Menu" and "33.4 Error messages").

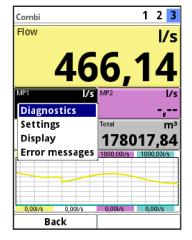



Fig. 37-9 Flow Combi: Pop-up menu and pages

37.8 Display Measurement Place 1/2 in measurement place Combi

Once the dialog window has been activated by pressing the rotary pushbutton you can use the pop-up menu to access the individual menus (Diagnostics, Settings, Display and Error messages) (see Sect. "Diagnostics", "31.1 Setting parameters in Measurement place Menu", "35 Display Parameter Menu" and "33.4 Error messages").

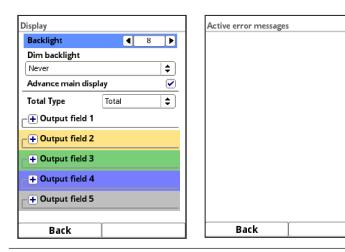


Fig. 37-10 MP1 Combi: Pop-up menu and pages

37.9 Display Total in Measurement Place Combi

Once the dialog window has been activated by pressing the rotary pushbutton you can use the pop-up menu to access the individual menus (Total, Day Totals and Display) (see Sect. "32.2 Total", "32.3 Day Totals" and "35 Display Parameter Menu").

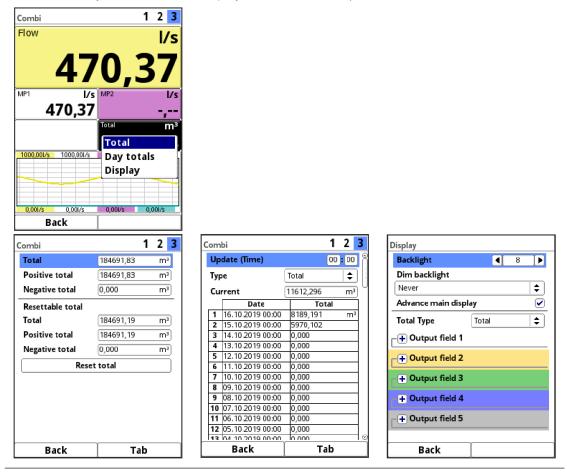


Fig. 37-11 Total Combi: Pop-up menu and pages

page 116 NF 600 - rev. 03 / 22.10.2019

Diagnostics

38 Diagnostics Menu Principles

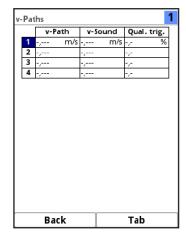
Fig. 38-1 Diagnostics Menu

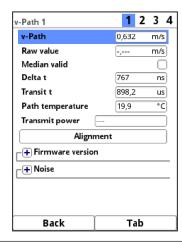
The >Diagnostics< menu can be found in the >Application< menu and/or >MP x< and/or >Combi< menu. The diagnosis is divided into four submenus, except in the >Combi< menu, where there is only one submenu.

This menu and all its submenus are read-only and simulation menus.

Settings on the areas below can be viewed or simulated in this section:

- v-Paths
- Inputs and Outputs (state and simulation) (in >Combi< too)
- · Signal analysis
- Simulation




Observe the safety information on simulation

Necessarily observe the safety information on simulation on page 129.

The Diagnostics section can also be very helpful for the user for certain problems, but the main user is NIVUS Customer Service.

39 Diagnostics v-Paths

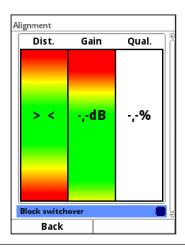


Fig. 39-1 Menu Diagnostics v-Paths

This menu is used to view information on hardware and current sensor/path data (see Fig. 39-1). There is no simulation available in this menu.

The transmitter starts the menu with an overview. You can jump to the individual v-paths from this overview.

The following settings/current values are available/readable:

>v-Path x

Individual measured velocities

The right function key (Tab) can be used to view each path individually. Prerequisite: at least one 2-path measurement must be available.

>Raw value

Actual measured value

>Median valid

A check mark indicates that the respective path operates within the usual limits. If no check mark is set, the path yields atypical values / outliers.

>Delta t

Measured transit time difference; the transmitter uses this value to compute the velocity (v)

>Transit t<

Average signal transit time between sensor 1 and sensor 2 of the according path

>Path temperature

Calculated medium temperature of the according path

>Transmit power

Classification of the transmission power in "Low", "Medium" and "High", indicates how much energy the system uses to generate ultrasonic signals. A high value indicates difficult operating conditions, a low value indicates optimum operating conditions.

>Alignment<

Tool for sensor positioning and thus for path alignment:

>Dist.< (Distance):

Indicates via the arrow pointer whether the parameterized sensor position needs to be corrected because of the actual operating conditions (move together or further away from each other). In the green area the sensor position is optimal, in the yellow and red areas it needs to be adjusted.

>Gain<:

Graphical representation of the receive gain. Gains in the green area are optimal. Care should be taken in the upper yellow area (high gain), as interference signals such as noise are also amplified there; this could cause the measurement system to fail. A measurement cannot be taken in the red area (very high gain): the measurement point is unsuitable for the measuring technique.

Although a measurement can be taken in the lower yellow area (low gain), there is a risk of overcontrol, and thus of inaccurate measurement results.

>Qual.< (Quality):

The quality display expresses as a percentage how well both sensors are installed relative to each other. This needs to be considered for clamp-on installations especially, since incorrectly mounted sensors can corrupt measurements.

>Block switchover<</p>

In multi-path systems, the display switches continuously from path to path for alignment purposes.

Select the check mark to stop the currently selected path in order to align the signal.

>Firmware version

Information on the firmware version and the components is stored here. These specifications are relevant for NIVUS service personnel.

page 118 NF 600 - rev. 03 / 22.10.2019

Noise

>Upstream typical

A continuous level (noise), transmitted in the measurement area against the flow direction.

>Upstream max.

Peaks - short-term disturbances such as pumps etc., which are detected here against the flow direction.

>Downstream typical<</p>

A continuous level (noise), transmitted in the measurement area with the flow direction.

>Downstream max.

Peaks - short-term disturbances such as pumps etc., which are detected here with the flow direction.

It is imperative: the higher the value the worse the signal.

40 Inputs and Outputs (analog and digital)

Fig. 40-1 Diagnostics Input/Output menu

See also Sect. "21.2 Plans of terminal connections".

40.1 Analog Inputs

This menu can be used to indicate the current values on the transmitter inputs as well as the readings assigned to this value by using the measurement span.

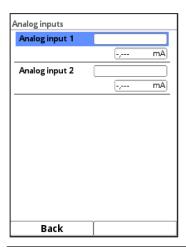
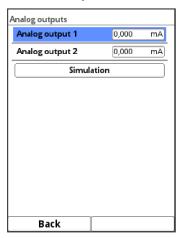



Fig. 40-2 Indication of analog input values

40.2 Analog Outputs

This menu can be used to indicate the calculated current values to be output through the analog converter as well as the readings assigned to these values by using the measurement span.

Moreover it is possible to simulate (password protected) the particular analog values.

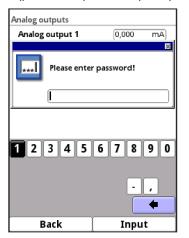


Fig. 40-3 Indication of analog output values

1

Note

Only the signal available on the analog output converter is shown here. The currents actually flowing cannot be output.

This menu cannot be used to detect and to indicate external faulty wiring.

page 120 NF 600 - rev. 03 / 22.10.2019

DANGER

Personal injury or property damage

The simulation of analog outputs shall be executed by trained electricians only. The responsible expert personnel must have sound knowledge of the entire control procedures of the according facility.

Prepare the simulation process carefully:

- Switch the subordinated systems to manual operation.
- · Disable actuating drives and similar or limit the according function.

It is absolutely necessary to have a safety person available during execution!

Disregarding may lead to personal injury or damage your facility.

All legally associated companies and subsidiaries of NIVUS group herewith in advance refuse any responsibility for any possible damage to persons or objects at any extent due to the extremely high risk of danger and unforeseeable consequences in the event of incorrect or faulty simulation!

DANGER

Effects on plant sections

The simulation of NivuFlow outputs will directly affect any subordinated plant sections without any safety interlocking measures!

Simulations are allowed to be executed exclusively by qualified expert personnel.

Observe the hints contained within the earlier warning!

Note

The simulation mode access is password protected due to the reasons of safety mentioned above.

Share your password with authorised and trained expert personnel only for reasons of personal sefety!

- To simulate an analog output proceed as follows:
 - 1. Enter your password.
 - 2. Turn the rotary pushbutton until the desired analog output is highlighted blue.
 - 3. Press the rotary pushbutton to activate (check) the analog output.
 - Then specify the desired output current as a numeric value.
 Observe that the analog output(s) will provide the specified voltages until the simulation is stopped.
 - 5. Press the left function key to exit the simulation menu.

40.3 Digital Inputs

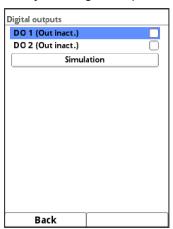

This menu shows the signals oncoming on the digital inputs. Active digital inputs are checked.

Fig. 40-4 Indication of digital inputs

40.4 Digital Outputs

The adjusted digital output values are indicated here.

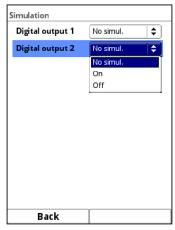


Fig. 40-5 Indication of digital outputs

A password protected simulation of digital outputs is available in this menu too.

DANGER

Personal injury or property damage

The simulation of analog outputs shall be executed by trained electricians only. The responsible expert personnel must have sound knowledge of the entire control procedures of the according facility.

Prepare the simulation process carefully:

- Switch the subordinated systems to manual operation.
- Disable actuating drives and similar or limit the according function.

It is absolutely necessary to have a safety person available during execution!

Disregarding may lead to personal injury or damage your facility.

All legally associated companies and subsidiaries of NIVUS group herewith in advance refuse any responsibility for any possible damage to persons or objects at any extent due to the extremely high risk of danger and unforeseeable consequences in the event of incorrect or faulty simulation!

page 122 NF 600 - rev. 03 / 22.10.2019

DANGER

Effects on plant sections

The simulation of NivuFlow outputs will directly affect any subordinated plant sections without any safety interlocking measures!

Simulations are allowed to be executed exclusively by qualified expert personnel.

Observe the hints contained within the earlier warning!

Note

The simulation mode access is password protected due to the reasons of safety mentioned above.

Share your password with authorised and trained expert personnel only for reasons of personal sefety!

- To simulate a digital output proceed as follows:
 - 1. Enter your password.
 - 2. Turn the rotary pushbutton until the desired digital output is highlighted blue.
 - Open the pull-down menu and select >No simul.<, >On< or >Off<.
 Observe that the digital output(s) will provide the specified voltages until the simulation is stopped.
 - 4. Press the left function key to exit the simulation menu.

The same procedure applies to activate the simulation of each output.

41 Signal Analysis

This menu is used to scan and to review the incoming signal from the sensor. Moreover the sensor function can be tested here.

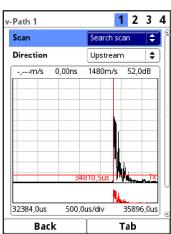


Fig. 41-1 Signal analysis Pulldown menu / search scan

Select from the options below:

>Inactive<

No signal scan/evaluation

>Search scan

(Coarse) signal scan based on customer settings and possibly extended ranges.

>Direction< (Fig. 41-1):

- Upstream (towards flow direction)
- Downstream (in flow direction)
- Up-/Downstream

>Scaling< of chart:

- Time
- Distance

>V-/H-Zoom< of chart

Turn the rotary pushbutton to select the graphic and press to activate;

Selection for V-Zoom: X1, X2, X5, X10, X20, X50 and X100

Selection for H-Zoom: Reduces the actual displayed/enlarged area within the graphic; the small graphic below shows the respective area in relation to the overall image.

>Block switchover<

In multi-path systems, the display switches continuously from path to path for alignment purposes.

Select the check mark to stop the currently selected path in order to align the signal.

>Signal scan

More accurate signal indication

>Direction<:

- Upstream (towards flow direction)
- Downstream (in flow direction)
- Up-/Downstream

>Scaling< of chart (Fig. 41-2):

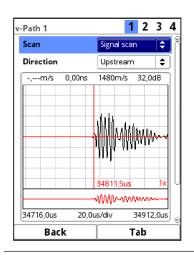
- Time
- Distance

>V-/H-Zoom< of chart

Turn the rotary pushbutton to select the graphic and press to activate;

Selection for V-Zoom: X1, X2, X5, X10, X20, X50 and X100

Selection for H-Zoom: Reduces the actual displayed/enlarged area within the graphic; the small graphic below shows the respective area in relation to the overall image.


>Block switchover<

In multi-path systems, the display switches continuously from path to path for alignment purposes.

Select the check mark to stop the currently selected path in order to align the signal.

A check mark can be set with **>FFT<** (Fast Fourier Transform). The selection changes the scaling from the time domain to the frequency domain. The signal is thus broken down into its frequency components and can be better examined for disturbances.

page 124 NF 600 - rev. 03 / 22.10.2019

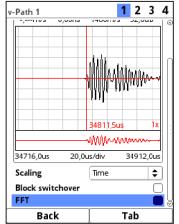


Fig. 41-2 Signal scan

>Signal scan env.< (Fig. 41-3)
 Received signal envelope

>Direction<:

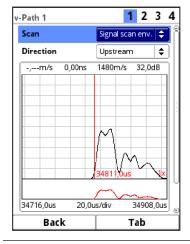
- Upstream (towards flow direction)
- Downstream (in flow direction)
- Up-/Downstream

>Scaling< of chart:

- Time
- Distance

>V-/H-Zoom< of chart

Turn the rotary pushbutton to select the graphic and press to activate;


Selection for V-Zoom: X1, X2, X5, X10, X20, X50 and X100

Selection for H-Zoom: Reduces the actual displayed/enlarged area within the graphic; the small graphic below shows the respective area in relation to the overall image.

>Block switchover<

In multi-path systems, the display switches continuously from path to path for alignment purposes.

Select the check mark to stop the currently selected path in order to align the signal.

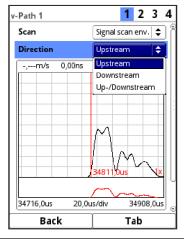


Fig. 41-3 Signal scan envelope

>Correlation< (Fig. 41-4)

Similarity and temporal shift of the received signals (delta t).

>V-/H-Zoom< of chart

Turn the rotary pushbutton to select the graphic and press to activate;

Selection of V-Zoom: X1, X2, X5, X10, X20, X50 and X100

Selection of H-Zoom: Reduces the actual displayed/enlarged area within the graphic; the small graphic below shows the respective area in relation to the overall image.

>Block switchover<

In multi-path systems, the display switches continuously from path to path for alignment purposes.

Select the check mark to stop the currently selected path in order to align the signal.

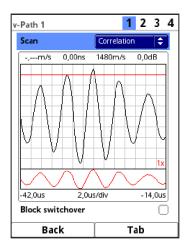
>Tx signal< (Fig. 41-4)

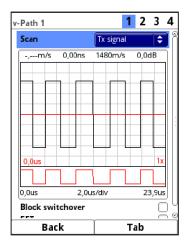
Visual representation / signal shape

>V-/H-Zoom< of chart

Turn the rotary pushbutton to select the graphic and press to activate;

Selection for V-Zoom: X1, X2, X5, X10, X20, X50 and X100


Selection for H-Zoom: Reduces the actual displayed/enlarged area within the graphic; the small graphic below shows the respective area in relation to the overall image.


>Block switchover<

In multi-path systems, the display switches continuously from path to path for alignment purposes.

Select the check mark to stop the currently selected path in order to align the signal.

A check mark can be set with **>FFT<** (Fast Fourier Transform). The selection changes the scaling from the time domain to the frequency domain. The signal is thus broken down into its frequency components and can be better examined for disturbances.

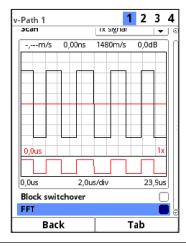


Fig. 41-4 Correlation / Tx signal

>Noise< (Fig. 41-5)

Display all noise (including noise interference) during signal analysis.

>Direction<:

- Upstream (towards flow direction)
- Downstream (in flow direction)
- Up-/Downstream

>V-/H-Zoom< of chart

Turn the rotary pushbutton to select the graphic and press to activate; Selection for V-Zoom: X1, X2, X5, X10, X20, X50 and X100

page 126 NF 600 - rev. 03 / 22.10.2019


Selection for H-Zoom: Reduces the actual displayed/enlarged area within the graphic; the small graphic below shows the respective area in relation to the overall image.

>Block switchover<

In multi-path systems, the display switches continuously from path to path for alignment purposes.

Select the check mark to stop the currently selected path in order to align the signal.

A check mark can be set with **>FFT<** (Fast Fourier Transform). The selection changes the scaling from the time domain to the frequency domain. The signal is thus broken down into its frequency components and can be better examined for disturbances.

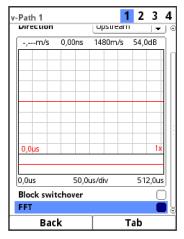


Fig. 41-5 Noise

>Sensor test< (Fig. 41-6)

Functional test (settling-time test; can also be performed in air) of the connected sensor. The data obtained is mainly used by the NIVUS customer service.

>Direction<:

- Upstream (towards flow direction)
- Downstream (in flow direction)
- Up-/Downstream

>Signal< (test procedure):

- Dirac (very short signal)
- Pulse (one signal period)
- Search (search signal)
- Measure (measurement signal)

>V-/H-Zoom< of chart

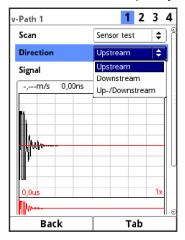
Turn the rotary pushbutton to select the graphic and press to activate;

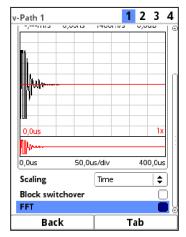
Selection for V-Zoom: X1, X2, X5, X10, X20, X50 and X100

Selection for H-Zoom: Reduces the actual displayed/enlarged area within the graphic; the small graphic below shows the respective area in relation to the overall image.

>Scaling< of chart:

- Time
- Distance




>Block switchover<

In multi-path systems, the display switches continuously from path to path for alignment purposes.

Select the check mark to stop the currently selected path in order to align the signal.

A check mark can be set with **>FFT<** (Fast Fourier Transform). The selection changes the scaling from the time domain to the frequency domain. The signal is thus broken down into its frequency components and can be better examined for disturbances.

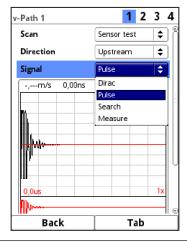


Fig. 41-6 Sensor test

42 Simulation

This menu allows the simulation of theoretical flow. Simulation is carried out by entering assumed values for velocity. These values do not really exist.

Using the dimensions of the programmed geometry as basis, the transmitter calculates the flow rate prevailing by using the simulated values.

This rate will be issued on the analog or digital outputs set previously.

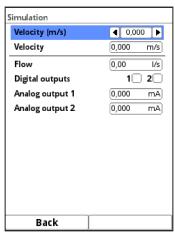


Fig. 42-1 Diagnostics / simulation

page 128 NF 600 - rev. 03 / 22.10.2019

DANGER

Personal injury or property damage

The simulation of analog and digital outputs shall be executed by trained electricians only. The responsible expert personnel must have sound knowledge of the entire control procedures of the according facility.

Prepare the simulation process carefully:

- Switch the subordinated systems to manual operation.
- Disable the actuation drives and similar or limit the according function.

It is absolutely necessary to have a safety person available during execution!

Disregarding may lead to personal injury or damage your facility.

All legally associated companies and subsidiaries of NIVUS group herewith in advance refuse any responsibility for any possible damage to persons or objects at any extent due to the extremely high risk of danger and unforeseeable consequences in the event of incorrect or faulty simulation!

DANGER

Effects on plant sections

The simulation of NivuFlow outputs will directly affect any subordinated plant sections without any safety interlocking measures!

Simulations are allowed to be executed exclusively by qualified expert personnel.

Observe the hints contained within the earlier warning!

Note

The simulation mode access is password protected due to the reasons of safety mentioned above.

Share your password with authorised and trained expert personnel only for reasons of personnel safety!

- To start the simulation proceed as follows:
 - Enter your password.
 - 2. Turn the rotary pushbutton until the velocity is highlighted blue.
 - 3. Specify the desired velocity.
 - 4. Confirm your entry with the right function key.
 - 5. Press the left function key to exit the simulation menu.

The flow rate value and output values/states calculated with the entered simulation data are automatically displayed in the lower area.

Error Messages

43 Error message indicated, Cause of failure and Troubleshooting

#	Error message		Cause of failure	Troubleshooting	
1	Q-Control	External	Setpoint received	(1) Ensure that the cable between transmitter and	
		setpoint	through analog	external setpoint generator is connected correctly.	
			input is invalid	(2) Make sure that the analog input settings match the	
				actual external setpoint spectrum.	
2	Q-Control	Q invalid	Q-measurement is	Check speed and altitude measurement for correct	
			invalid, controller cannot work	parameterization and measured values.	
3	Q-Control	Torque	Torque input is	(1) Check digital input wiring; torque and measured	
"	Q-Control	Torque	enabled; torque	value signal.	
			value measured	(2) Check the parameterized torques in the transmit-	
			by the controller	ter.	
			application is too	(3) Check the actual torque on the slide.	
			high		
4	Analog	Value too	Analog input too	Make sure that the settings for the analog input match	
	input	high	high	the actual external setpoint spectrum.	
				Maximum value: 20.5 mA	
5	Analog	Value too	Analog input too	Make sure that the settings for the analog input match	
	input	low	low	the actual external setpoint spectrum.	
0.7		D (((0) ()	27.16	Minimum value: 3.75 mA with 4-20 mA	
27	Hardware	Battery (3V)	Voltages too high	Contact NIVUS Hotline (serial number and exact error	
			or too low (device battery)	message required).	
28	Hardware	Power ad-	Voltages too high	(1) Ensure that the power supply is stable on the	
20	Tialuwaie	aptor (15V)	or too low	mains side.	
			01 100 1011	(2) Disconnect the transmitter from the mains for ten	
				minutes and then reconnect.	
				(3) Contact NIVUS Hotline (serial number and exact	
				error message required).	
30	Hardware	System	Voltages too high	(1) Ensure that the power supply is stable on the	
		(5V)	or too low	mains side.	
				(2) Disconnect the transmitter from the mains for ten	
				minutes and then reconnect.	
				(3) Contact NIVUS Hotline (serial number and exact	
31	Hardware	Logic (3.3V)	Voltages too high	error message required). (1) Ensure that the power supply is stable on the	
31	ilaluwale		or too low	mains side.	
			- 01 100 10W	(2) Disconnect the transmitter from the mains for ten	
				minutes and then reconnect.	
				(3) Contact NIVUS Hotline (serial number and exact	
				error message required).	
32	Hardware	Logic (1.8V)	Voltages too high	(1) Ensure that the power supply is stable on the	
			or too low	mains side.	
				(2) Disconnect the transmitter from the mains for ten	
				minutes and then reconnect.	
				(3) Contact NIVUS Hotline (serial number and exact	
				error message required).	

page 130 NF 600 - rev. 03 / 22.10.2019

#	Error mess	age	Cause of failure	Troubleshooting
33	Hardware	DRAM (0.9V)	Voltages too high or too low	 (1) Ensure that the power supply is stable on the mains side. (2) Disconnect the transmitter from the mains for ten minutes and then reconnect. (3) Contact NIVUS Hotline (serial number and exact error message required).
34	Hardware	I ² C	Communication error in plug-in cards	 (1) Ensure that the power supply is stable on the mains side. (2) Disconnect the transmitter from the mains for ten minutes and then reconnect. (3) Contact NIVUS Hotline (serial number and exact error message required).
35	Hardware	Slot Power- down	Plug-in card was restarted because of too many errors (defective)	Contact NIVUS Hotline (serial number and exact error message required).
41	Internal memory	Persistent	Memory error in PseudoRam on SD card	(1) Disconnect the transmitter from the mains for ten minutes and then reconnect.(2) Contact NIVUS Hotline (serial number and exact error message required).
42	Internal memory	Persistent Backup	Memory error in PseudoRam on SD card	(1) Disconnect the transmitter from the mains for ten minutes and then reconnect.(2) Contact NIVUS Hotline (serial number and exact error message required).
43	Internal memory	Archive	Memory error in archive system on SD card	(1) Disconnect the transmitter from the mains for ten minutes and then reconnect.(2) Replace SD card with an equivalent one.(3) Contact NIVUS Hotline (serial number and exact error message required).
44	System	Reboot	Device was ma- nually booted (also update)	No action necessary, because no error
45	System	Hardfault	Restart after pro- gram error	Contact NIVUS Hotline (serial number and exact error message required).
46	System	Watchdog	Restart after pro- gram error	Contact NIVUS Hotline (serial number and exact error message required).
47	System	Bootloader	Bootloader error	Contact NIVUS Hotline (serial number and exact error message required).
48	System	Startup	Cold start (power on)	No action necessary, because no error
49	System	Time chan- ged	Time was set	No action necessary, because no error
50	System	Time server (SNTP)	Time was set via network protocol	No action necessary, because no error

#	Error mess	age	Cause of failure	Troubleshooting
51	System	NFE-Box	NFE does not respond	 (1) Make sure that the cables/connectors between transmitter and NFE are correct. (2) Ensure parameters are set correctly in the transmitter. (3) Restart the transmitter via >System< / >Service<. (4) If the error message appears again, contact the NIVUS hotline (serial number and exact error message required).
62	v-Path	Communi- cation	DSP card res- ponds with invalid telegram	(1) Restart the transmitter via >System< / >Service<.(2) Contact NIVUS Hotline (serial number and exact error message required).
63	v-Path	Logic	Invalid DSP card	(1) Restart the transmitter via >System< / >Service<. (2) Contact NIVUS Hotline (serial number and exact error message required).
64	v-Path	Faulty response	DSP card error message (reset or similar)	(1) Restart the transmitter via >System< / >Service<.(2) Contact NIVUS Hotline (serial number and exact error message required).
65	v-Path	No commu- nication	DSP card not responding	(1) Restart the transmitter via >System< / >Service<.(2) Contact NIVUS Hotline (serial number and exact error message required).
66	v-Path	Value too high	Path check, measured value deviates significantly	 (1) Check the cable / transmitter connectors and check the cables for damage. (2) Make sure that the cables have not been manually increased in length. (3) Check the parameterized offset values using the cable information. (4) Check whether the sensor position deviates from the parameterized position. (5) Contact NIVUS Hotline (serial number and exact error message required).
67	v-Path	Value too low	Path check, measured value deviates significantly	 (1) Check the cable / transmitter connectors and check the cables for damage. (2) Make sure that the cables have not been manually increased in length. (3) Check the parameterized offset values using the cable information. (4) Check whether the sensor position deviates from the parameterized position. (5) Contact NIVUS Hotline (serial number and exact error message required).
68	v-Path	invalid	Path check; value invalid (from DSP card)	(1) Make sure that the sensors connected in pairs actually belong to the same path in the installation. (2) Check all sensors and cables for visible damage. (3) Check operability (are transients visible) of all sensors in >Application />Sensor test<. (4) Check the parameterization of the measurement point and the system sensors. (5) Restart the transmitter via >System />Service (6) Contact NIVUS Hotline (serial number and exact error message required).

page 132 NF 600 - rev. 03 / 22.10.2019

Maintenance and Cleaning

WARNING

Disconnect instrument from mains power

Disconnect the instrument from mains power and safeguard the higher system against restart before you begin maintenance works.

Disregarding may lead to electric shocks.

WARNING

Germ contamination

Some parts of the measurement system may be contaminated by hazardous germs especially if the sensors are installed in wastewater. This is why precautionary measures shall be taken while being in contact with cables and sensors.

Wear protective clothing.

44 Maintenance

44.1 Maintenance Interval

The Type NivuFlow transmitters are conceived to be virtually free of calibration, maintenance and wear.

NIVUS, however, recommend having the entire measurement system inspected by the NIVUS customer service once per year.

The maintenance intervals may vary depending on the use case.

Extent and intervals of maintenance depend on the following conditions:

- Material wear
- Process liquid and hydraulic conditions
- General regulations for the operators of the measurement facility
- Ambient conditions

In addition to the annual inspection NIVUS recommends a complete maintenance of the measurement system by one of the legally associated companies and subsidiaries of NIVUS group after ten years at the latest.

In general, the inspection of instruments/sensors is a basic measure which helps to increase operational safety as well as the lifetime.

44.2 Customer Service Information

For annual inspection of the entire measurement system or complete maintenance after ten years at the latest contact our customer service:

NIVUS GmbH - Customer Service

Phone +49 7262 9191 - 922

Customercenter@nivus.com

45 Cleaning

45.1 Transmitter

WARNING

Disconnect instrument from mains power

Observe to disconnect the transmitter from mains power.

Disregarding may induce the risk of electrical shocks.

Important Note

- Do not remove the blue plastic rails to clean the enclosure.
- Do not use a damp cloth to wipe over the **terminal clamp blocks**.

Clean the transmitter enclosure if required using a dry, lint-free cloth.

For stubborn dirt the enclosure can be cleaned using a damp cloth. Do not use caustic cleansing agents or solvents. Light household cleaners or soapy water can be used.

45.2 Sensors

The hints on how to maintain and clean the sensors shall be necessarily observed. These hints can be found in the respective Technical Instruction and/or Instruction Manual.

This (these) document(s) is (are) part of the standard sensor delivery.

46 Dismantling/Disposal

Improper disposal may be harmful to the environment.

- Always dispose of equipment components and packaging materials according to applicable local regulations on environmental standards for electronic products:
 - 1. Disconnect the unit from mains power.
 - 2. Use appropriate tools to remove the connected cables from the faceplate of the instrument.
 - 3. Remove the transmitter from the DIN rail.
 - 4. Remove the buffer battery and make sure that the buffer battery will be disposed of separately.

EC WEEE-Directive logo

This symbol indicates that the Directive 2012/19/EU on waste electrical and electronic equipment requirements shall be observed on the disposal of the equipment. NIVUS GmbH supports and promotes the recycling and environmentally friendly, separate collection/disposal of waste electrical and electronic equipment in order to protect the environment and human health. Observe the local disposal regulations and laws.

NIVUS GmbH is registered with the EAR, therefore public collection and return points in Germany can be used for disposal.

The unit contains a buffer battery (Lithium coin cell), which must be disposed of separately.

page 134 NF 600 - rev. 03 / 22.10.2019

47 Installation of spare parts and parts subject to wear and tear

We hereby particularly emphasise that replacement parts or accessories not supplied by NIVUS are not certified and approved by NIVUS.

Installation and/or the use of such products hence may negatively influence predetermined design characteristics of the measurement system or even lead to instrument failures.

The legally associated companies and subsidiaries of NIVUS group cannot be held responsible for any damage resulting from the use of non-original parts and non-original accessories.

A selection of NIVUS GmbH accessories can be found in Sect. "48 Accessories". Further information on spare parts and accessories can be obtained from your local representative/regional office or directly from NIVUS GmbH.

48 Accessories

ZUB0 NFWx	Field enclosure in various designs to protect the NivuFlow outdoors
ZUB0 SPSYS 08	Clamping system for clamp-on measurements, consisting of tensioning belt, width 8 mm (length 10 m for 2x 5 m) and two turnbuckles for fastening of two sensors; incl. coupling paste
ZUB0 CORA x	Mounting system (for clamp-on sensors) in different versions
ZUB0 KOP 100	3 pairs of coupling pads; transparent; 0.5 mm thick
ZUB0 SPx	Endless clamp belt and head; 12.7 mm wide
BSL0 x	Various surge protection devices for power supply, sensors and data lines for the NivuFlow 600
ZUB0 USB 08	8 GB USB stick for readout of parameters and readings
SW0N SPRO	Evaluation software, NivuSoft Professional with matched functions: documentation of measurement sites, output as graphs and tables, creation of statistics/reports etc.

Table 48-1 Accessories for transmitter NivuFlow 600

Further information on spare parts and accessories can be obtained from your local representative/regional office or directly from NIVUS GmbH.

Index

ex	Disposal134
	Disposal of materials
	Disposal of products18
A	
Accessories	E
Accident level	EC WEEE-Directive logo134
Approvals	Electrostatic discharge (ESD)30
Article number	Environmental standards134
Article number20	Equipotential bonding cable
В	overvoltage protection51
	Error messages
Backlight	ESD30
Basic menu	ESD risks30
Buffer battery16, 134	Extension module47
С	F
Calming sections43	File names95
Cause of failure130	Function >Browse< 89
CE label23	T dilottori > Di owac +
Change passwort65	G
Chemicals31	
Communication	Gases31
Modbus105	Germ contamination16, 133
TCP/IP	
Web server	Н
Compress95	Hotline54
Connections 12, 18	Humidity20, 24
Contact protection measures 43	
Control elements 55	I
Copyrights3	Installation Instructions30
Customer Service133	Installation place30
	Installation regulations34
D	Instruction manual20
Damage, visible20	Interfaces14, 21
Data depth	
Expert94	1
Extended	Language
Standard	Language Operation98
USB stick	Letter block
Data format USB stick94	
	Liability disclaimer
Data memory	Load parameters
Date/Time selection	Low voltage network42
Degree of pollution	
Degree of protection24	M
Delivery	Main menu66
Device identification	Measurement with
Device setup21	clamp-on sensors 59
Display	wet sensors
Overview 55	Modbus communication105
	Modifications4
	IVIOGIIIOGUOTI3 4

N	Residual-current-operated protect	
Nameplate23	device	34
Names3	Restart	404
Numeric keypad57	measurement	
	Return	
0	Revision of parameters	58
Operating conditions24	0	
Operating elements12, 13	S	
Operating instructions54	Safety Instructions	
Operating temperature24	Save parameters	
Operation language98	Sensors	
Ordering replacement parts23	Shock resistance	
Original parts135	Shocks	
Output fields 108	Signal words	15
Overview	SNTP	404
Product21	time server	
Overvoltage category24	Spare parts	
Overvoltage protection measures48	Specifications	
communication interfaces50	Storage cycle	
equipotential bonding cable51	Storage temperature	
mA-inputs/outputs50 power supply48	Sunlight	
sensor connectors51	Symbols	
Overvoltage protection "SonicPro T"	System time	101
Overvoltage protection51		
	Т	
P	TCP/IP	405
Period of transmission	communication	
USB stick93	Temperature	20
Power consumption24	Theoretical flow simulation	100
Power supply24		
Precautions16	Time error, relative	
Product Construction21	Time period	
Property rights3	Time period	
Protection class24	Time range	
Protective conductor16	Total Type	
	Translation	
Q	Transport	
Q suppressed	Trend graph	
low-flow suppression76	Troubleshooting	130
Qualified personnel 19, 54		
·	U	
R	Units system	99
Radioactive radiation31	Update NivuFlow	
RCD34	Use in accordance	18
Reboot	Use in accordance with the	
System 103	requirements	18
Reception inspection	User's Responsibilities	18
Relative time error		
Reset		
parameters 104		

•

Vibrations	20
v suppressed low-flow suppression	76
W	
Warning notices	40
on the product (option)	10
Warranty	17
Web server	
communication	105
Wire cross section	35

page 138 NF 600 - rev. 03 / 22.10.2019

Credits and Licenses

49 List of references of the licenses and codes used

The transmitter type NivuFlow uses code of the following Open Source Projects:

- Freetype (http://www.freetype.org)
- Libharu (http://libharu.org)
- Libjpeg (http://www.ijg.org)
- Libpng (http://www.libpng.org)
- Zlib (http://www.zlib.net)
- Mini-XML (http://www.msweet.org)
- Nano-X/nxlib (http://www.microwindows.org)
- FLTK (http://www.fltk.org)
- Appendix1: LGPL
- · Appendix2: MPL

Questions concerning licenses

If you have any questions concerning licenses refer to opensource@nivus.com

Approvals and Certificates

nivus

NIVUS GmbH Im Täle 2 75031 Eppingen

Telefon: +49 07262 9191-0
Telefax: +49 07262 9191-999
E-Mail: info@nivus.com
Internet: www.nivus.de

EN/

౼

EU Konformitätserklärung

EU Declaration of Conformity Déclaration de conformité UE

Für das folgend bezeichnete Erzeugnis:

For the following product: Le produit désigné ci-dessous:

Bezeichnung: Durchflussmessumformer stationär NivuFlow 6xx

Description:permanent flow measurement transmitterDésignation:convertisseur de mesure de débit fixe

Typ / Type: NF6-...

erklären wir in alleiniger Verantwortung, dass die auf dem Unionsmarkt ab dem Zeitpunkt der Unterzeichnung bereitgestellten Geräte die folgenden einschlägigen Harmonisierungsvorschriften der Union erfüllen:

we declare under our sole responsibility that the equipment made available on the Union market as of the date of signature of this document meets the standards of the following applicable Union harmonisation legislation:

nous déclarons, sous notre seule responsabilité, à la date de la présente signature, la conformité du produit pour le marché de l'Union, aux directives d'harmonisation de la législation au sein de l'Union:

• 2014/30/EU • 2014/35/EU • 2011/65/EU

Bei der Bewertung wurden folgende einschlägige harmonisierte Normen zugrunde gelegt bzw. wird die Konformität erklärt in Bezug die nachfolgend genannten anderen technischen Spezifikationen:

The evaluation assessed the following applicable harmonised standards or the conformity is declared in relation to other technical specifications listed below:

L'évaluation est effectuée à partir des normes harmonisées applicable ou la conformité est déclarée en relation aux autres spécifications techniques désignées ci-dessous:

• EN 61326-1:2013 • EN 61010-1:2010

Diese Erklärung wird verantwortlich für den Hersteller:

This declaration is submitted on behalf of the manufacturer: Le fabricant assume la responsabilité de cette déclaration:

> NIVUS GmbH Im Taele 2 75031 Eppingen Allemagne

abgegeben durch / represented by / faite par:

Marcus Fischer (Geschäftsführer / Managing Director / Directeur général)

Eppingen, den 20.04.2016

Gez. Marcus Fischer

Q:\Formulare\CE...